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In everyday life and in science, people often gather 
data to estimate a value precisely enough to take action. 
We use sensory data to decide that a fruit is ripe enough 
to be tasty but not overripe—that the ripeness is “just 
right” (e.g., Kappel, Fisher-Fleming, & Hogue, 1995, 
1996). Scientists measured the position of the planet 
Mercury (among other things) until the estimate of the 
parameter γ in competing theories of gravity was suf-
ficiently close to 1.0 to accept general relativity for 
applied purposes (e.g., Will, 2014).

These examples illustrate a method for decision mak-
ing that I formalize in this article. This method, which 
is based on Bayesian estimation of parameters, uses 
two key ingredients. The first ingredient is a summary 
of certainty about the measurement. Because data are 
noisy, a larger set of data provides greater certainty 
about the estimated value of measurement. Certainty is 
expressed by a confidence interval in frequentist sta-
tistics and by a highest density interval (HDI) in 
Bayesian statistics. The HDI summarizes the range of 
most credible values of a measurement. The second 
key ingredient in the decision method is a range of 
parameter values that is good enough for practical pur-
poses. This range is called the region of practical equiv-
alence (ROPE). The decision rule, which I refer to as 
the HDI+ROPE decision rule, is intuitively straightfor-
ward: If the entire HDI—that is, all the most credible 
values—falls within the ROPE, then accept the target 

value for practical purposes. If the entire HDI falls 
outside the ROPE, then reject the target value. Other-
wise, withhold a decision.

In this article, I explain the HDI+ROPE decision rule 
and provide examples. I then discuss considerations 
for setting the limits of a ROPE and explain that similar 
considerations apply to setting the decision thresholds 
for p values and Bayes factors.

Disclosures

Files available at the Open Science Framework (OSF; 
https://osf.io/jwd3t/) provide complete R code for the 
two-group example in Figure 2. This code can be trivi-
ally modified for other sets of two-group data. The 
Supplement file available at the same URL discusses the 
following topics:

•• ROPE limits for regression coefficients in logistic 
regression

•• Highest-density intervals versus equal-tailed 
intervals
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•• Decision-theoretic properties of the HDI+ROPE 
decision rule, including its asymptotic consis-
tency and a loss function for which the decision 
procedure may be a Bayes rule

•• A decision rule based on the ROPE without the 
HDI

•• Comparison of the HDI+ROPE decision rule with 
frequentist equivalence testing, null-hypothesis 
significance testing (NHST), and Bayes factors

•• Application of the HDI+ROPE decision rule to 
meta-analysis and comparison with meta-analysis 
using Bayes factors

Bayesian Parameter Estimation

Bayesian inference is merely reallocation of credibility 
across possibilities, according to the mathematics of 
conditional probability. In formal data analysis, the pos-
sibilities are parameter values in a model of the data. 
For example, suppose we are measuring the systolic 
blood pressure (in units of millimeters mercury) of a 
group of people who have been exposed to a stressor. 
We may choose to describe the set of blood pressures 
with a normal distribution, which has two parameters: 
the location parameter, µ, which characterizes the cen-
tral tendency, and the scale parameter, σ, which char-
acterizes the variability across people. We start with a 
prior distribution, a reasonable probability distribution 
over possible values of the parameters. Note that the 
prior distribution is a joint distribution over the space 
of (µ,σ) parameter value combinations. (The prior dis-
tribution is not a distribution over data, nor is the prior 
distribution a sampling distribution of test statistics.) 
After measuring the people’s blood pressures, we real-
locate probability to values of µ and σ that are consis-
tent with the observed measurements. The result is a 
posterior probability distribution over the joint space 
of all possible combinations of the parameter values, 
(µ,σ). Bayesian inference computes the reallocation 
using a simple formula called Bayes rule, named after 
Thomas Bayes (Bayes & Price, 1763). (For nontechnical 
introductions to Bayesian data analysis, see Kruschke 
& Liddell, 2018a, 2018b; for an accessible book-length 
tutorial, see Kruschke 2015).

Probability distribution over 
parameter values

There is uncertainty about the parameter values because 
many parameter values are reasonably consistent with 
whatever data we may have. In a Bayesian framework, 
the uncertainty in parameter values is represented as a 
probability distribution over the space of parameter 
values. Parameter values that are more consistent with 

the data have higher probability than parameter values 
that are less consistent with the data. If we are uncertain 
about the parameter values, perhaps because we have 
very few data, then the probability distribution over the 
parameter space is spread out. With more data, the 
distribution becomes more peaked over a narrower 
range of values, reflecting our increased certainty in 
the estimate.

The HDI

In the case of continuous parameters, the height of the 
distribution at a given value is called the probability 
density for that value (for discrete-valued parameters, 
the term probability mass is used). The width of the 
parameter distribution indicates our uncertainty in 
the parameter value. A useful summary of the width is 
the 95% HDI. Any parameter value inside the HDI has 
higher probability density than any value outside the 
HDI, and the total probability of values in the 95% HDI 
is 95%. Parameter values with higher density are inter-
preted as more credible than parameter values with 
lower density. Therefore, we can describe values inside 
the 95% HDI as “the 95% most credible values of the 
parameter.” (For further discussion, see the section 
titled Equal-Tailed Intervals Vs. Highest-Density Inter-
vals in the Supplement file at the OSF, https://osf.io/
jwd3t/).

Making a Decision Based on the 
Relation Between the HDI and ROPE

Discrete decisions should be avoided if possible, 
because such decisions encourage people to ignore the 
magnitude of the parameter value and its uncertainty (e.g., 
Cumming, 2014; Kruschke & Liddell, 2018b; Wasserstein 
& Lazar, 2016, and many references cited therein). Such 
black-and-white thinking leads to misinterpretation and 
confusion. Despite this admonition against black-and-
white thinking, there may be some situations in which an 
analyst needs to make a discrete decision about a param-
eter value such as a null value. In medical applications, 
for example, decisions to recommend a treatment or 
not must be made.

The ROPE

There are many possible decision rules, but here I 
focus on one that requires the analyst to consider 
whether all the most credible parameter values are 
sufficiently far away from the null value that the null 
value can be rejected, or whether all the most cred-
ible parameter values are sufficiently close to the null 
value that the null value can be accepted. This 

https://osf.io/jwd3t/
https://osf.io/jwd3t/
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decision rule is made concrete by defining proximity 
to the null value using the ROPE, which specifies the 
range of parameter values that are equivalent to the 
null value for practical purposes. The notion of the 
ROPE appears in the literature under many different 
names, such as indifference zone, range of equiva-
lence, equivalence margin, margin of noninferiority, 
smallest effect size of interest, and good-enough 
belt (e.g., Carlin & Louis, 2009; Freedman, Lowe, & 
Macaskill, 1984; Hobbs & Carlin, 2008; Lakens, 2014, 
2017; Serlin & Lapsley, 1985, 1993; Spiegelhalter, 
Freedman, & Parmar, 1994).

The HDI+ROPE decision rule

Consider a ROPE around a null value of a parameter. 
If the 95% HDI of the parameter distribution falls com-
pletely outside the ROPE, then one should reject the 
null value, because the 95% most credible values of the 

parameter are all not practically equivalent to the null 
value. If the 95% HDI of the parameter distribution falls 
completely inside the ROPE, then one should accept 
the null value for practical purposes, because the 95% 
most credible values of the parameter are all practically 
equivalent to the null value. If the 95% HDI is neither 
completely outside nor completely inside the ROPE, 
then one should remain undecided, because some of 
the most credible values are practically equivalent to 
the null but others are not. This HDI+ROPE decision 
rule has been described in several previous publica-
tions (Kruschke, 2010, 2011a, 2011b, 2013, 2015; 
Kruschke, Aguinis, & Joo, 2012; Kruschke & Liddell, 
2018a, 2018b; Kruschke & Vanpaemel, 2015).

Figure 1 illustrates different relationships between 
an HDI and ROPE, and the decisions to which they 
lead. Figure 1a shows a case in which the HDI falls 
completely outside the ROPE, and therefore the null 
value is rejected because all the most credible values 
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Fig. 1. Examples of different relationships between a highest density interval (HDI) and the region of practical equivalence (ROPE), and the 
decisions to which they lead. In each panel, the unmarked vertical axis is probability density, the HDI is marked by the horizontal bar, and 
the ROPE limits are marked by the two vertical bars.
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are not practically equivalent to the null. Figure 1b 
shows a case in which the HDI falls completely inside 
the ROPE, and therefore the null value is accepted for 
practical purposes because all the most credible values 
are practically equivalent to the null.

Figure 1c also shows a case in which the null value 
is accepted for practical purposes—here, despite the 
fact that the null value is not itself within the HDI. 
This case is important because it contrasts the meaning 
of the HDI (from Bayesian inference) with the mean-
ing of the ROPE (from decision making). Accepting 
the null value for practical purposes does not mean 
that the null value is among the most credible values 
of the parameter distribution. Accepting the null value 
for practical purposes means merely that all the most 
credible values are practically equivalent to the null 
value.

The remaining panels in Figure 1 show cases in 
which we should remain undecided. In all three panels, 
some of the HDI falls outside the ROPE and some of 
the HDI falls inside the ROPE. Notice that we do not 
reject the null value in the situation depicted in Figure 
1d despite the fact that the null value falls outside the 
HDI, because some of the HDI is practically equivalent 
to the null. This decision contrasts with the analogous 
situation in NHST: A null value is rejected if it falls 
outside the 95% confidence interval. We do not accept 
the null value in the case of Figure 1e despite the fact 
that the null value falls within the HDI, because some 
of the HDI is not practically equivalent to the null. We 
do not accept the null value in the case of Figure 1f 
despite the fact that the HDI spans the ROPE, because 
some of the most credible values are not equivalent to 
the null value.

Notice that accepting a landmark parameter value, 
as in the situations illustrated in Figures 1b and 1c, is 
not the same thing as treating the accepted value as 
the best estimate of the parameter value. On the con-
trary, the Bayesian posterior distribution indicates the 
estimate of the parameter value, and typically the most 
probable (modal) parameter value is treated as the best 
estimate of the parameter value. When we accept a 
landmark parameter value, we are merely saying that 
the estimate of the parameter value is close enough to 
the landmark value, with high enough precision, that 
we can treat the landmark value as good enough for 
practical purposes. In other words, accepting a land-
mark parameter value means that the best estimate of 
the parameter value is practically equivalent to the 
landmark value, not that the best estimate of the param-
eter value is the landmark value.

The Supplement file at the OSF (https://osf.io/
jwd3t/) describes some decision-theoretic properties of 
the HDI+ROPE decision rule.

Numerical example

I illustrate this decision rule by applying it to a com-
parison of two groups for whom we have metric data 
(as opposed to ordinal or categorical data). Suppose 
the data are IQ scores from participants who have been 
given a placebo and participants who have been given 
a drug intended to make them smarter. The data within 
each group might have outliers, so we describe the 
groups with distributions that have optionally heavy 
tails (namely, mathematical t distributions). The model 
therefore has central-tendency parameters for the two 
groups, denoted µ1 and µ2; scale parameters for the two 
groups, denoted σ1 and σ2; and a normality parameter, 
denoted ν, that has large values for nearly normal dis-
tributions and small values for heavy-tailed distribu-
tions. The analysis begins with a broad prior distribution 
on the joint space of these five parameters. The broad 
prior is designed to have minimal influence on the form 
of the posterior distribution (see Kruschke, 2013, for 
complete details).

The data for this example were created as random 
numbers from normal distributions, and the sample 
sizes were arbitrary. The data are represented by the 
histograms in the upper right panels of Figure 2. The 
other panels of Figure 2 show aspects of the five-
dimensional posterior distribution; that is, they show 
different perspectives of the single joint distribution. 
The parameter distributions were derived with Markov 
chain Monte Carlo methods (MCMC; see chap. 7 of 
Kruschke, 2015) and computed using the JAGS software 
(Plummer, 2003, 2017) with the runjags package in R 
(Denwood, 2016). HDI limits were computed from the 
MCMC chain using the method explained in Section 
25.2.3 of Kruschke (2015) and with an effective sample 
size that exceeded 10,000, as recommended in Section 
7.5.2 of Kruschke (2015). Complete computer code for 
this example is available at the OSF (https://osf.io/
jwd3t/).

In this application to two groups, it is natural to want 
to know the typical IQ score in each group (i.e., the 
magnitudes of µ1 and µ2), the spread of scores in each 
group (i.e., the magnitudes of σ1 and σ2), the difference 
in magnitude and spread between the two groups, and 
the uncertainty of all those estimates. We are interested 
in the magnitude of the difference between the means 
because that indicates how much IQ scores have been 
shifted by the smart drug, on average. We are interested 
in the magnitude of the difference between the spreads 
because that indicates how much the consistency of 
the scores has been affected by the smart drug. It is 
known, for example, that stressors can increase vari-
ability across people, as some people improve in 
response to a stressor whereas others decline (e.g., 

https://osf.io/jwd3t/
https://osf.io/jwd3t/
https://osf.io/jwd3t/
https://osf.io/jwd3t/
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Fig. 2. Applying the decision rule to compare two groups. The data from the groups (i.e., the IQ scores, denoted 
here by the generic label y) are shown as histograms in the two upper panels of the right column. Superimposed 
on the data histograms are t distributions predicted from the posterior distribution. The left column shows the 
(marginal) posterior distributions of the individual parameters in the model. The lower three panels of the right 
column show aspects of the posterior distribution with regions of practical equivalence (ROPEs), delimited by 
the vertical bars (see the main text for how the ROPE limits were selected). These panels show the percentages 
of the posterior distributions below the low limit of the ROPE, within the ROPE, and above the high limit of the 
ROPE. The 95% highest density intervals (HDIs) are indicated by the black horizontal bars. In this example, the 
ROPE+HDI decision rule rejects a mean difference of zero because the 95% HDI falls completely outside the 
ROPE, accepts a scale difference of zero because the 95% HDI falls completely inside the ROPE, and rejects an 
effect size of zero because the 95% HDI falls completely outside the ROPE.
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Lazarus & Eriksen, 1952). And of course, we are inter-
ested in the uncertainty of those estimates, so that we 
know how much confidence to place on their values.

The lower three panels of the right column in Figure 
2 show, respectively, the posterior distribution of the 
difference between the means (i.e., µ1 – µ2), the poste-
rior distribution of the difference between the scales 
(i.e., σ1 – σ2), and the posterior distribution of the effect 
size (i.e., the standardized difference between the 
means, calculated as δ µ µ σ σ= − +( )/ ( )/1 2 1

2
2
2 2; Cohen, 

1988).
We can establish ROPEs on the parameters (or com-

binations of parameters) to make decisions. I discuss 
methods for setting ROPE limits later in this article, but 
here, for purposes of illustration, I set a ROPE on the 
effect size at half of Cohen’s conventional definition of 
a small effect, that is, at δ = ±0.1. To establish a ROPE 
on the difference between the means, one option is to 
start with the same convention as for δ and translate it 
to an analogous value on µ1 – µ2. Thus, if we assume 
that the standardized population value of σ is 15.0, then 
we can calculate the corresponding ROPE as follows: 
µ1 – µ2 = ±0.1 × 15 = ±1.5. A different option is to derive 
the ROPE from a real-world consideration, such as a 
change in mean IQ that would imply a negligible 
change in gross domestic product (GDP) per capita. 
Rindermann and Thompson (2011, p. 761) reported that 
a change of 1 IQ point in the population mean predicts 
a change of $229 in GDP per capita. If we suppose that 
a $687 change is practically equivalent to zero, then 
the ROPE would again have a width of 3 IQ points (i.e., 
±1.5). Finally, for the ROPE on the difference between 
scales, I again used a half-width of 1.5, because σ is on 
the same scale as µ. This setting is merely a fallback 
position in the absence of specific knowledge about 
the utility of changes in variability, as distinct from 
changes in central tendency. These ROPEs are indicated 
in Figure 2. We decide to reject a zero difference 
between the means because the 95% most credible 
values are outside the ROPE. We also decide to reject 
a zero effect size. But we decide to accept a zero dif-
ference between the scales (σs) because the 95% most 
credible values of the difference are all practically 
equivalent to zero.

In summary, the posterior distribution is a multidi-
mensional distribution on the joint parameter space, 
and various parameters (and combinations of param-
eters) can be compared simultaneously with relevant 
ROPEs. It is important to keep in mind that the full 
posterior distribution is the information delivered by 
Bayesian analysis, as summarized by the mode and 95% 
HDI of the distribution. The discrete decisions using 
ROPEs are secondary conclusions. Notice that to make 
these decisions using the HDI+ROPE rule, we must 

explicitly consider the magnitudes and uncertainties of 
the parameters; in contrast, p values and Bayes factors 
do not indicate the magnitudes and uncertainties of the 
parameters.

More About the ROPE

The ROPE in theory testing

The concept of the ROPE is useful for implementing a 
solution to a paradox from Meehl (1967, 1997). Theories 
pursued by NHST posit merely any nonnull effect and 
are therefore confirmed merely by rejecting the null 
value of the parameter, regardless of the actual magni-
tude of the parameter. Assuming that most variables of 
interest have some small but nonzero correlation with 
any other variable of interest, the correlation will be 
detected if the data set is large enough, and then the 
anything-but-null theory will be confirmed. Thus, 
anything-but-null theories incur a methodological para-
dox: Such theories become easier to confirm with larger 
sample sizes, rather than easier to disconfirm, and this 
is not the way scientific theories are supposed to work. 
By contrast, quantitatively predictive theories become 
easier to disconfirm with larger sample sizes because 
reality will almost always be somewhat discrepant from 
any quantitatively specific prediction. For example, the 
specific quantitative predictions of the Newtonian the-
ory of gravity were disconfirmed by precise measure-
ments of the orbit of the planet Mercury (e.g., Schiff, 
1960; Will, 2014).

But how can quantitatively predictive hypotheses be 
confirmed? Serlin and Lapsley (1985, 1993) explained 
that a decision to confirm a quantitative prediction 
requires a ROPE (what they called a “good-enough 
belt”) around the predicted value. If the observed value 
is within the ROPE, the hypothesis is confirmed for the 
current practical purposes. The ROPE is a decision 
boundary that reflects the precision needed to distin-
guish current theories. If two theories make very similar 
predictions, then a narrow ROPE is needed to distin-
guish them. If two theories make rather different pre-
dictions, then a wider ROPE can be used. The ROPE 
also should take into account the practical meaning of 
the magnitude of discrepancy. In this way, when an 
observed value of a parameter falls within the ROPE of 
the predicted value, the prediction is said to be con-
firmed for current practical purposes.

The ROPE in equivalence testing and 
noninferiority testing

The concept of the ROPE is essential to frequentist 
equivalence testing (e.g., Lakens, 2017). In equivalence 
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testing, the analyst specifies a ROPE around the null 
value and decides that the estimated parameter is sta-
tistically equivalent to the null value if the confidence 
interval falls entirely within the ROPE (e.g., Westlake, 
1976, 1981). This decision rule follows naturally from 
the meanings of the confidence interval and ROPE: The 
confidence interval is the range of parameter values 
that are not rejected (e.g., Cox, 2006), and if all the 
unrejected values fall within the ROPE, then they are 
all practically equivalent to the null value.1

The notion of the ROPE is also central to noninferi-
ority testing (e.g., Lesaffre, 2008; Wiens, 2002), although 
only the low end of the ROPE is emphasized. In non-
inferiority testing, the analyst specifies a value below 
the null value that represents the largest decrease from 
the null value that is, nevertheless, negligible for practi-
cal purposes. The estimated value of the parameter is 
declared to be noninferior to the null value if that 
estimated value is significantly above the low end of 
the ROPE.

Specifying ROPE limits

How does one specify the limits of a ROPE? Because 
the ROPE is a decision threshold that captures practical 
equivalence, its limits are influenced by practical con-
siderations, which might change through time as risks 
are reassessed and as theories are refined. Any decision 
rule must be calibrated to be useful to the audience of 
the analysis and to the people who are affected by the 
decision, and this is also true of decision rules based 
on p values and Bayes factors.

Equivalence testing has been used extensively in 
medical research, and the U.S. Food and Drug Admin-
istration (FDA) has set guidelines for the decision 
boundaries in equivalence testing (e.g., U.S. FDA, Cen-
ter for Drug Evaluation and Research, 2001; U.S. FDA, 
Center for Veterinary Medicine, 2016). Recent FDA guid-
ance for bioequivalence studies recommends ROPE 
limits of 0.8 and 1.25 for the ratio of means in the two 
groups (U.S. FDA, Center for Veterinary Medicine, 2016, 
p. 16). Contemporary industry standards use ROPE lim-
its around ±20% for applications with moderate risk, 
but the ROPE may be narrower (i.e., ±5% to ±10%) 
when the risks are high, or the ROPE may be wider 
(i.e., ±26% to ±50%) when the risks are low (Little, 2015, 
Table 1).

Standards for the decision boundary of noninferiority 
testing have also been established by the FDA, and their 
recent guidance emphasizes that great care must be 
taken to establish the noninferiority limit because of 
the tremendous real-world costs and benefits of drugs 
and therapies (U.S. FDA, Center for Drug Evaluation 
and Center for Biologics Evaluation and Research, 

2016). Walker and Nowacki (2011) explained that one 
conventional setting of the noninferiority limit is at half 
of “the lower limit of a confidence interval of the dif-
ference between the current therapy and the placebo 
obtained from a metaanalysis” (p. 194).

In many fields of science, competing theories make 
detailed quantitative predictions. For example, a param-
eter called γ should be exactly 1.0 in the theory of 
general relativity, but 0 in Newtonian gravity and other 
values near 1 in other theories (see Will, 2014, Fig. 5, 
p. 43, for a summary of the progression of 90 years of 
experiments measuring γ). A recent experiment estab-
lished a value of 1 ± 0.00001 (Bertotti, Iess, & Tortora, 
2003). This experiment does not merely reject Newto-
nian gravity (γ = 0), but confirms general relativity (γ = 
1.0) even if one is using very narrow ROPEs.

In the social sciences, Cohen (1988) defined mea-
sures of effect size for different sorts of parameters 
and proposed conventional values for small, medium, 
and large effects typically observed in social-science 
research. In the case of the effect size of a mean, 
defined as δ = (µ – µ0)/σ, Cohen suggested that 0.2 is 
a “small” effect, and therefore we might say that an 
effect is practically equivalent to zero if it is less than, 
say, half the size of a small effect and falls within a 
ROPE of ±0.1. This conventional limit was used for 
Figure 2.

It must be emphasized that “half the size of a small 
effect” is merely a fallback convention when there is 
no way to calibrate effects by their real-world conse-
quences. In the case of IQ points, for instance, there 
might be applications for which a 0.1 effect implies 
nonnegligible practical consequences. A study of the 
GDP of 90 nations as a function of IQ and other vari-
ables found that “an increase of 1 IQ point in the intel-
lectual class [the IQ at the 95th percentile] raises the 
average GDP [per capita] by $468 U.S.” (Rindermann & 
Thompson, 2011, p. 761). (The influence of IQ is 
weaker at the mean than at the 95th percentile, as 
mentioned earlier in the context of Fig. 2.) Thus, an 
increase of average IQ of the intellectual class from 130 
to 131, for example, might have important conse-
quences for GDP because that increase is multiplied 
across millions of people, even though an increase of 
1 IQ point in any one person may be negligible for that 
person.

A different approach to setting the limits of a ROPE 
was described by Lakens (2017, p. 359), who pointed 
out that the maximum sample size a researcher is will-
ing to collect data from implies, for any specific desired 
power, the minimal effect size that can be reliably 
detected. Implicitly, the sample size indicates the mini-
mal effect size that the researcher is willing to treat as 
not practically equivalent to zero. This minimal effect 
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size, in turn, implies corresponding ROPE limits for an 
equivalence test. I think, however, that this approach 
will yield ROPEs that are too wide when sample sizes 
are small (e.g., when research is underpowered; Max-
well, 2004) and will yield ROPEs that are too narrow 
when sample sizes are large (e.g., with “big data”; 
Adjerid & Kelley, 2018). ROPEs should be set according 
to the demands of competing theories and the practical 
implications of decisions, not by the measurement pre-
cision implied by sample size. Falling objects do not 
hit the ground more softly if they are measured with less 
precise instruments. A new drug is not more equivalent 
to an existing drug if it is tested for equivalence using a 
smaller sample size. Moreover, there are often moderate-
N studies (which individually yield only moderate-pre-
cision estimates) that are worth doing even when the 
ROPE is relatively narrow, because future meta-analyses 
of multiple moderate-N studies may find a narrow meta-
analytic HDI. Indeed, for random-effects models in meta-
analyses, usually greater precision can be achieved by 
many moderate-N studies than by a few large-N studies, 
because hierarchical shrinkage of estimated parameter 
values operates more effectively (e.g., Kruschke & Lid-
dell, 2018b; Kruschke & Vanpaemel, 2015). In meta-
analyses, there is no foreknowledge of which studies 
will be uncovered for inclusion (from database searches 
of published studies and social-network searches of 
unpublished studies), so an analyst cannot anticipate the 
samples sizes or the number of studies. The ROPE must 
be defined from other considerations.

For parameters that have the same scale as the data, 
it is relatively straightforward to think about a ROPE. 
For example, in the case of IQ scores with a normal 
distribution, the mean, µ, is on the IQ scale, and its 
ROPE limits are in IQ points. Other models may have 
parameters that are less directly related to the scales of 
the data, and therefore ROPE limits may need to be 
derived more indirectly. Consider linear regression. We 
might want to say that a regression coefficient, βx, is 
practically equivalent to zero if a change across the 
“main range of x” produces only a negligible change 
in the predicted value, ŷ. Suppose we specify a negli-
gible change in ŷ as ±0.1Sy, where Sy is the standard 
deviation of y (a range that may be motivated by the 
convention that 0.1S is half of a “small” effect), and we 
specify the “main range of x” as Mx ± 2Sx (because if x 
were normally distributed, this range would cover just 
over 95% of the distribution). Given these specifica-
tions, a regression coefficient is practically equivalent 
to zero when a change of x from Mx – 2Sx to Mx + 2Sx 
yields a change of ŷ only from My – 0.1Sy to My + 0.1Sy, 
which implies ROPE limits of βx = ±0.05 for standard-
ized variables. Similar considerations apply to logistic 

regression, as explained in the Supplement file at the 
OSF (https://osf.io/jwd3t/).

ROPE limits are like decision thresholds 
for p values and Bayes factors

In general, ROPE limits are defined by considering what 
counts as practically equivalent to the null value, by 
quantifying acceptable uncertainty as constrained by 
competing theories or real-world utilities. It can be 
challenging to specify a definitive ROPE, but one should 
not delude oneself into thinking that it is any more 
straightforward to specify a definitive decision thresh-
old for a p value. Some people have grown comfortable 
with .05 as the decision threshold for a p value because 
it is a conventional value that statistical rituals are 
designed to comply with. But the convention hides the 
fact that there is vigorous debate about an appropriate 
decision threshold for p. In a recent article, Benjamin 
et al. (2018) argued that the threshold p value for the 
social sciences should be changed to .005. In physics, 
the contemporary conventional threshold p value cor-
responds to 5σ, which requires p < .00000029 for sig-
nificance. Decision thresholds for p values are on no 
firmer ground than ROPE limits.

Bayesian null-hypothesis testing involves a decision 
statistic called the Bayes factor (BF). The specification 
of decision thresholds for BFs is as fraught as the speci-
fication of ROPEs and decision thresholds for p values. 
Jeffreys (1961) attached decision-strength labels to 
ranges of BFs as follows: 3.16 through 10.0 is “substan-
tial,” greater than 10.0 through 31.6 is “strong,” greater 
than 31.6 through 100.0 is “very strong,” and greater 
than 100.0 is “decisive.” A subsequent influential article 
by Kass and Raftery (1995) suggested that BFs of 3.0 
through 20.0 are “positive” evidence, BFs greater than 
20.0 through 150.0 are “strong” evidence, and BFs 
greater than 150.0 are “very strong” evidence. In the 
psychological sciences, many proponents of BFs have 
routinely used 3 as the decision threshold (e.g., Dienes, 
2016). On the other hand, Schönbrodt, Wagenmakers, 
Zehetleitner, and Perugini (2017) recommended a BF 
of 10 for mature confirmatory research but other limits 
for nascent research, and those authors also pointed 
out that different BF thresholds may apply to different 
types of hypothesis tests. Rouder, Morey, and Province 
(2013) emphasized that an extremely large BF is needed 
to reject null hypotheses that have a large prior prob-
ability, such as the null hypothesis that people cannot 
foretell the future through temporally reversed causal-
ity. Again, do not be lulled into thinking that establish-
ing a decision threshold for Bayes factors is any easier 
than establishing ROPEs for HDIs.

https://osf.io/jwd3t/
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Regardless of the decision statistic being used (p 
value, BF, or HDI), decision thresholds should ulti-
mately take into account the utilities (i.e., costs and 
benefits) of the decisions. Unfortunately, the utilities 
are often unavailable. Regardless of the availability of 
utilities, the decision criteria should be established 
before the data are observed, to prevent biased deci-
sions (e.g., Lakens et al., 2017).

Conclusion

Deciding to accept or reject a null value is dangerous, 
as it engenders fallacious black-and-white thinking. But 
when it is necessary to make such a decision, the fal-
lacy might be fended off by focusing on explicit esti-
mates of parameter magnitude and uncertainty. The 
HDI+ROPE decision method does exactly that: The 
analyst explicitly examines the probability distribution 
over parameter values and considers the relationship 
between the most credible parameter values and a 
region of practical equivalence to the null value. On the 
other hand, p values and BFs hide the parameter’s mag-
nitude and uncertainty, which makes it easier to slip 
into specious black-and-white thinking. Setting the lim-
its of a ROPE is no more difficult in principle than set-
ting the decision threshold for a p value or for a BF, so 
researchers should be no more uncomfortable setting a 
ROPE than setting these other decision thresholds.
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Note

1. The equivalence-testing procedure, involving a confidence 
interval and ROPE, is mathematically equivalent to the method 
of two one-sided tests (TOST; Schuirmann, 1987). With TOST, 
the analyst checks whether the estimated parameter is signifi- 
cantly below the high end of the ROPE and significantly above 
the low end of the ROPE. If both directional tests are passed, 
the analyst concludes that the parameter is statistically equiva-
lent to the null value. Because these tests are one sided, using 
1 – α tests will achieve the same Type I error rate as using a  
1 – 2α confidence interval in equivalence tests.
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