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 The Measurement of Observer Agreement for Categorical Data

 J. RICHARD LANDIS

 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109 U.S.A.

 GARY G. KOCH

 Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27514 U.S.A.

 Summary

 This paper presents a general statistical methodology for the analysis of multivariate cate-
 gorical data arising from observer reliability studies. The procedure essentially involves the con-
 struction of functions of the observed proportions which are directed at the extent to which the
 observers agree among themselves and the construction of test statistics for hypotheses involving
 these functions. Tests for interobserver bias are presented in terms of first-order marginal homo-
 geneity and measures of interobserver agreement are developed as generalized kappa-type statistics.
 These procedures are illustrated with a clinical diagnosis example from the epidemiological litera-
 ture.

 1. Introduction

 Researchers in manv fields have become increasingly aware of the observer (rater or

 interviewer) as an important source of measurement error. Consequently, reliability studies
 are conducted in experimental or survey situations to assess the level of observer variability
 in the measurement procedures to be used in data acquisition. When the data arising

 from such studies are quantitative, tests for interobserver bias and measures of inter-
 observer agreement are usually obtained from standard ANOVA mixed models or random
 effects models such as those discussed in Anderson and Bancroft [1952], Scheffe [1959],
 and Searle [1971]. As a result, hypothesis tests of observer effects are used to investigate
 interobserver bias, i.e., differences in the mean response among observers, and estimates
 of intraclass correlation coefficients are used to measure interobserver reliability. rVlodifica-
 tions and extensions of these standard ANOVA models have been proposed by Grubbs
 [1948, 1973], Mandel [1959], Fleiss [1966], Overall [1968], and Loewenson, Bearman and
 Resch [1972] to evaluate the measurement error in various types of applications. Although
 assumptions of normality for these models may not be warranted in certain cases, the
 ANOVA procedures discussed in Searle [1971] and the symmetric square difference pro-

 cedure in Koch [1967, 1968] still permit the estimation of the appropriate components
 of variance and the reliability coefficients.

 On the other hand, many observer reliability studies involve categorical data in which
 the response variable is classified into nominal (or possibly ordinal) multinomial categories.
 As reviewed in Landis and Koch [1975a, 1975b], a wide variety of estimation and testing
 procedures have been recommended for the assessment of observer variability in these

 Key Words: Observer agreement; Multivariate categorical data; Kappa statistics; Repeated measurement
 experiments; Weighted least squares.
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 160 BIOMETRICS, MARCH 1977

 cases. In this paper we propose a unified approach to the evaluation of observer agreement

 for categorical data by expressing the quantities which reflect the extent to which the

 observers agree among themselves as functions of observed proportions obtained from

 underlying multidimensional contingency tables. These functions are then used to produce
 test statistics for the relevant hypotheses concerning interobserver bias in the overall

 usage of the measurement scale and interobserver agreement on the classification of in-

 dividual subjects. For illustrative purposes, this general methodology is developed within
 the context of a typical data set which resulted from an investigation of observer vari-

 ability in the clinical diagnosis of multiple sclerosis.

 2. A Clinical Diagnois Example

 Let us consider the data arising from the diagnosis of multiple sclerosis reported in

 Westlund and Kurland [1953]. Among other things, the investigators were interested in
 comparing patient groups to study possible differences in the geographical distributions

 of the disease. For this purpose, a series of patients in Winnipeg, Manitoba and a separate
 series of patients in New Orleans, Louisiana were selected and were examined by a neurol-
 ogist in their respective locations. After the completion of all the examinations, each
 neurologist was requested to review all the records without seeing his earlier summary

 and diagnosis and to classify them into one of the following diagnostic classes:

 1. Certain multiple sclerosis;
 2. Probable multiple sclerosis;

 3. Possible multiple sclerosis (odds 50: 50);

 4. Doubtful, unlikely, or definitely not multiple sclerosis.

 In order to evaluate agreement between the diagnosticians, the Winnipeg neurologist then
 reviewed and classified each of the New Orleans patient records, and vice versa. The
 data resulting from these review diagnoses are presented in Table 1.

 A preliminary inspection of the Winnipeg data indicates that the Winnipeg neurologist

 tended to diagnose more of the patients as certain (1) or probable (2) multiple sclerosis
 than did his counterpart in New Orleans. As a result, they agreed on the diagnosis of
 only 64/149 (43 percent) of the patients. Although the differences in the overall crude
 distributions of the diagnoses seem to be less prominent within the New Orleans patients,
 the neurologists diagnosed only 33/69 (48 percent) of them into identically the same
 category. The statistical issues concerning these differences in diagnosis can be summarized
 within the framework of the following basic questions:

 (1) Are there any differences between the two patient populations with respect to the

 overall crude distribution of the diagnoses by each of the two neurologists?
 (2) Are there any differences between the overall crude distributions of the diagnoses

 by the two neurologists within each of the respective patient populations?
 (3) Is there any neurologist X sub-population interaction in the overall crude distribu-

 tion of the diagnoses?
 (4) Is there any difference between the two patient populations with respect to the

 overall agreement of the two neurologists on the specific diagnosis of individual
 patients?

 (5) Is the agreement of the two neurologists on the specific diagnosis of individual
 patients significantly different from dance agreement based on their overall crude
 distributions of diagnoses?
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 Table 1

 DIAGNOSTIC CLASSIFICATION REGARDING MIULTIPLE SCLEROSIS

 Sub-population Winnipeg Patients (1)

 Observer Winnipeg Neurologist (2)

 Diagnostic 1 2 3 4 Total Proportion

 Class

 1 38 5 0 1 44 0.295

 New Orleans 2 33 11 3 0 47 0.315
 Neurologist

 (1) 3 10 14 5 6 35 0.235

 4 3 7 3 10 23 0.154

 Total 84 37 11 17 149

 Proportion 0.564 0.248 0.074 0.114

 Sub-population New Orleans Patients (2)

 Observer Winnipeg Neurologist (2)

 Diagnostic 1 2 3 4 Total Proportion
 Class

 1 5 3 0 0 8 0.116

 2 3 11 4 0 18 0.261
 New Orleans

 Neurologist 3 2 13 3 4 22 0.319

 (1)
 4 1 2 4 14 21 0.304

 Total 11 29 11 18 69

 Proportion 0.159 0.420 0.159 0.261

 (6) Are there certain patterns of disagreement which may reflect significant imprecision
 in the diagnostic criteria?

 As stated in Koch et al. [1977], questions (1)-(3) are directly analogous to the hypotheses
 of "no whole-plot effects," "no split-plot effects," and "no whole-plot X split-plot inter-
 action" in standard split-plot experiments. In this context, question (1) addresses differences
 among the sub-populations, question (2) involves the issue of interobserver bias, and
 question (3) is concerned with the observer X sub-population interaction. Thus, the
 first-order marginal distributions of response for each of the neurologists within each
 sub-population contain the relevant information for dealing with these questions. In
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 162 BIOMETRICS, MARCH 1977

 contrast to overall crude differences, questions (4)-(6) are addressed at interobserver
 agreement on a subject-to-subject basis; and, as such they are directly analogous to
 hypotheses concerning intraclass correlation coefficients in random effects models. Hence,
 certain functions of the diagonal cells of various subtables are used to provide information
 for estimating and testing the significance of agreement on the classification of individual
 subj ects.

 In the following sections a general methodology for answering these questions is de-
 veloped in terms of specific hypotheses. These procedures are then illustrated with an
 analysis of the data in Table 1.

 3. Methodology

 Let i = 1, 2, ... , s index a set of sub-populations from which random samples have
 been selected. Suppose that the same response variable is measured separately by each
 of d observers using an L-point scale. Let the r = Ld response profiles be indexed by a

 vector subscript j = (jl il * jd), where j, = 1, 2, , L for g = 1, 2, , d. Further-
 more, let 7rij = 7ri i2, i, id represent the joint probability of response profile j for randomly
 selected subjects from the ith sub-population. Then let the first-order marginal probability

 =0i wk Er 1i I , i 2 d,*' for g = l, 2, , d (3.1)
 j with ik = ,2,

 represent the probability of the kth response category for the gth observer ill the ith sub-
 population.

 3.1 Hypotheses Involving Marginal Distributions

 Hypotheses directed at the questions of differences among sub-populations and inter-

 observer bias involve distributions of the response profiles and can be expressed in terms

 of constraints on the first-order marginal probabilities fis . As a result, the specific
 hypotheses associated with questions (1)-(3) are directly analogous to HSM , HCI , and

 HAM outlined in Koch et al. [1977] in expressions (2.4), (2.5), and (2.9), respectively. In
 particular, the d observers correspond to the d conditions, and thus the hypothesis of
 first order marginal symmetry (homogeneity) addresses the issue of interobserver bias. These
 hypotheses can also be expressed in terms of constraints on mean score functions associated
 with each observer such as the { Di} summary indexes specified in (2.14) in Koch et al. [1977].
 Further discussion of hypotheses involving marginal distributions within the context

 of observer agreement studies is given in Landis [1975].

 3.2 Hypotheses Involving Generalized Kappa-Type Measures

 Whereas the previous hypotheses concerning differences among sub-populations and
 interobserver bias involved only the first-order marginal probabilities, hypotheses directed
 at the extent to which observers agree among themselves on the classification of individual
 subjects must be formulated in terms of the internal elements of the table. For example,
 the estimate of the crude proportion of agreement between two observers is simply the
 sum of the observed proportions on the main diagonal of the corresponding two-way table.
 In addition, if partial credit is permitted for certain types of disagreement, an estimate

 of the weighted proportion of agreement will involve the weighted inclusion of the off-
 diagonal cells.
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 As reviewed in Landis and! Koch [1975a, 1975b], numerous measures of observer agree-

 ment have been proposed for categorical data, e.g., Goodman and Kruskal [1954], Cohen
 [1960, 1968], Fleiss [1971], Light [1971], and Cicchetti [1972]. Most of these quantities

 are of the form

 K = 1 --- (3.2)

 where ir0 is an observational probability of agreement and wre is a hypothetical expected
 probability of agreement under an appropriate set of baseline constraints such as total

 independence of observer classifications. Ranging from [- 7re/(l - re)] to +1, K indicates
 the extent to which the observational probability of agreement is in excess of the prob-

 ability of agreement hypothetically expected under the baseline constraints. Furthermore,

 as shown in Fleiss and Cohen [1973] and Fleiss [1975], K is directly analogous to the intra-

 class correlation coefficient obtained from ANOVA models for quantitative measurements

 and can be used as a measure of the reliability of multiple determinations on the same

 subj ects.

 Several kappa-type measures of interobserver agreement can be formulated to in-

 vestigate selected patterns of disagreement simultaneously by choosing corresponding

 sets of weights which reflect the role of each response category in a given agreement index.
 For example, a set of weights can be chosen so that the resulting agreement measure

 indicates the combined performance of all the observers, such as majority or consensus

 agreement, or sets of weights can be directed at subsets of observers, such as all possible
 pairwise agreement measures. Alternatively, these weights can be chosen so that the
 associated kappa measures indicate the increments in agreement which result by succes-
 sively combining relevant categories of the response variable. Such kappa measures are

 said to be in a hierarachical relationship with each other. Thus, in general, let w1;, W2v,
 ... , wj be u sets of weights assigned to the response profiles indexed by j = (j, , j,, .. * id)
 Moreover let 0 < whj < 1 for h = 1, 2, , u over all j, so that the resulting estimates
 are interpretable as probabilities of agreement. Then the observational probability of

 agreement associated with the hth set of weights in the ith sub-population is the weighted
 sum

 Nih =W*.. Z iw for = 21,2 ... I (3.3)
 i =f 1 2, .., U.

 Correspondingly, the expected proportion of agreement associated with (3.3) is the weighted
 sum

 'Y i h Z Wh.7ri(i for 12(3i4) ~~Yih = ~~~~~~h =1, 2, . .. , U,(34

 where wrij(e) represents the joint hypothetical expected probability of response profile j
 for randomly selected subjects from the ith sub-population.

 These expected probabilities are determined by the choice of a particular set of baseline

 constraints assumed for the response profiles. For this purpose, let E = {IEl , E2 , ...
 represent such underlying constraints on the marginal probabilities {/,in} of (3.1). In
 this context, the following sets of constraints are of interest in creating interobserver
 agreement measures:

 (i) Under the assumption of total independence among the response variables from

 the d observers, the {17ri i (e) } satisfy
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 164 BIOMETRICS, MARCH 1977

 -E : 7r ii 2 .* . *i d = Ofi 1;1i2i 2 . .f i di d
 d

 = Joikik for i = 1, 2, * *, s. (3-5)
 k = 1

 (ii) Under the assumption of "no interobserver bias" the hypothesis of first-order

 marginal homogeneity (Hc A in Koch et al. [1977]) holds. In this situation, let the
 common probability of classification into the kth category be

 VPik = Oilk = Obi2k = = (3.6)

 for i = 1, 2, , s and k = 1, 2, *.., L. Then under the baseline constraints

 of total independence and marginal homogeneity the {7ri (e)} satisfy

 52 :2 () = {i I i j2 I i 2d

 d

 = T~iI'o for i= 1, 2, ** ,s. (3.7)
 g = 1

 Consequently, a generalized kappa-type measure of agreement directly analogous to
 (3.2) can be formulated by

 Kih = Nih - i for i = 1, 2, , S (3.8)
 1 - T'ih It = 1,1 2, ,

 under a set of specified constraints in E. Here Kih represents an agreement measure among
 the d observers in the ith sub-population with respect to the hth set of weights.

 Within this framework, the specific hypotheses associated with questions (4)-(6) can
 now be formulated as follows:

 (4) If there are no differences among the s sub-populations with respect to the measures
 of overall specific agreement among the d observers under E, then the { Kih} satisfy
 the hypothesis

 HSA I Ez Klh = K2h = Kh for t = 1, 2, , , (3.9)

 where SA denotes sub-population agreement.

 (5) If the level of observed agreement is equal to that expected under E, then the
 Kih} satisfy the hypothesis

 HNA I EZ Kih = O for = 1, 2, , s (3.10)
 h =1, 2, ...

 where NA denotes no agreement.

 (6) In some cases the weights for the kappa measures are chosen to be in a hierarchical
 relationship with each other in order to investigate specific disagreement patterns.
 In these situations, if the extent of disagreement is the same for the categories
 combined by the (h + 1)-st set of weights as for those combined by the hth set,

 then the {Kih} satisfy the hypothesis

 HHAjfEz Ki,h+1 = Ki,h for i = 1, 2, * , s, (3.11)

 where HA denotes hierarchical agreement.

 In order to maintain consistent nomenclature when describing the relative strength
 of agreement associated with kappa statistics, the following labels will be assigned to the
 corresponding ranges of kappa:
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 Kappa Statistic Strength of Agreement

 < 0.00 Poor

 0.00-0.20 Slight

 0.21-0.40 Fair

 0.41-0.60 1\Ioderate

 0.61-0.80 Substantial

 0.81-1.00 Almost Perfect

 Although these divisions are clearly arbitrary, they do provide useful "benchmarks" for

 the discussion of the specific example in Table 1.

 3.3 Estimation and Hypothesis Testing

 Test statistics for the hypotheses considered in the previous sections as well as estimators

 for corresponding model parameters can be obtained by using the general approach for

 the analysis of multivariate categorical data proposed by Grizzle, Starmer and Koch [1969]
 (hereafter abbreviated GSK) as outlined in Appendix 1 in Koch et al. [1977]. The hypotheses

 in Section 3.1 involving constraints on the first-order marginal probabilities can be tested

 by expressing the estimates of the {4iak} or the {a-qid as linear functions of the type given
 in Appendix 1 (A.14) in Koch et al. [1977]. These particular matrix expressions have already

 been discussed in considerable detail in Koch and Reinfurt [1971] and Koch et at. [1977],
 and thus they will not be elaborated here. Otherwise, their specific construction for these
 hypotheses in observer agreement studies is documented in Landis [1975].

 In contrast to the linear functions which pertain to the hypotheses in Section 3.1,

 all the hypotheses involving generalized kappa-type measures require the expression of

 the ratio estimates of the {Kih} as compounded logarithmic-exponential-linear functions
 of the observed proportions as formulated in Appendix 1 (A.20) in Koch et al. [1977].
 As a result, the test statistics for the hypotheses in Section 3.2 can also be generated by

 the corresponding expression given in Appendix 1 (A.11) in Koch et al. [1977].

 4. Analysis of Multiple Sclerosis Data

 This section is concerned with the analysis of the multiple sclerosis data ill Table 1

 with primary emphasis given to illustrating the methodology in Section 3. Tests of sig-
 nificance are used in a descriptive context to identify important sources of variation as

 opposed to a rigorous inferential context; and thus issues pertaining to multiple compar-
 isons are ignored here. These, however, can be handled by the Scheffe type procedures
 given in Grizzle, Starmer and Koch [1969]. The design for this example involves s = 2
 sub-populations, d = 2 observers, and L = 4 response categories. Thus, there are r = L 16

 possible multivariate response profiles within each of the sub-populations.

 4.1 Marginal Homogeneity Tests

 The functions required to test the hypotheses involving marginal distributions can
 be generated in the formulation of (A.14) in Appendix 1 in Koch et al. [1977] with the

 function vector F' = (F1', F2') where

 F1' = (0.295, 0.315, 0.235, 0.564, 0.248, 0.074) (4.1)

 F2' = (0.116, 0.261, 0.319, 0.159, 0.420, 0.159),
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 Table 2

 HIERARCHICAL WEIGHTS FOR AGREEMENT MEASURES

 Weights w1j w2j w3j w4j

 Observer 2 2 2 2

 Diagnostic 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
 Class

 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

 Observer 1 2 0 1 0 0 1100 1 00 1 1 1 0
 3 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1

 4 0 0 0 1 0 0 0 1 0 0 11 0 0 1 1

 which contain the marginal proportions for diagnostic classes "1," "2" and "3" for the
 two observers within the two sub-populations. The test statistic for Hsm is Qc = 46.37
 with d.f. = 6, which implies that there are significant (a = 0.01) differences in the dis-
 tributions of the observed response profiles between the Winnipeg and New Orleans patients.
 The tests of this hypothesis within each of the observers also indicate statistically sig-
 nificant (a = 0.01) differences between the two sub-populations, although the Winnipeg
 neurologist represents the more dominant component. Similarly, the test statistic for HcMa
 is Qc = 69.01 with d.f. = 6, which implies that there are significant (a = 0.01) differences
 in the response profiles between the two neurologists within each sub-population. Moreover,
 the dominant component of these observer differences is within the Winnipeg patient
 group. These results suggest that significant interobserver bias exists between the two
 neurologists in their overall usage of the diagnostic classification scale. In addition, the
 goodness-of-fit statistic for testing the interaction hypothesis HAger is Q = 14.09 with
 d.f. = 3. This significant (a = 0.01) observer X sub-population interaction is consistent
 with the result that the observer differences are more substantial in the Winnipeg patient
 group (Qc = 58.47) than in the New Orleans patient group (Qc = 10.54).

 Table 3

 DESCRIPTION OF HIERARCHICAL WEIGHTS

 Set of Disagreement Permitted
 Weights for Agreement Statistic

 1 None; requires perfect agreement.

 2 Certain (1) with Probable (2).

 3 Certain (1) with Probable (2);
 Possible (3) with Doubtful (4).

 Certain (1) with Probable (2);
 4 Probable (2) with Possible (3);

 Possible (3) with Doubtful (4).
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 4.2 Hierarchical Kappa-Type Measures of Agreement

 Specific patterns of disagreement between the neurologists on the diagnostic classifica-

 tion of individual subjects can be investigated by selecting a hierarchy of weights which

 successively combine adjoining categories of diagnosis in order to create potentially less

 stringent reliability measures. For example, the four sets of weights in Table 2 can be

 used to investigate the sources of imprecise diagnostic criteria. As indicated in Table 3,

 these weights are chosen so that specific disagreement patterns are successively tolerated

 in the corresponding estimates of agreement. In particular, w1j represents the set of weights
 which generate the kappa measure of perfect agreement proposed in Cohen [1960].

 The sequence of hierarchical kappa-type statistics within each of the two patient

 populations associated with the weights given in Table 2 can be expressed in the formula-
 tion (A.20) in Appendix 1 in Koch et al. [1977] under the baseline constraints of total
 independence El in (3.5) by letting

 1111 0000 0000 0000

 0000 1 1 1 1 0000 0000

 0000 0000 1111 0000

 0000 0000 0000 1 1 1 1

 1 0 00 01 0 0 0 1 0 0 0 1 0 0 0

 A, - '01 0001( OO1??X2; (4.2)
 24X3200 1 0 010 00 1 0 0010 001 0

 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 1 000 0 1 00 00 1 0 000 1

 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1

 1100 1100 0011 0011

 _1 1 00 1 1 1 0 0 1 1 1 001 1

 1000 1000 0000

 1 00 0 0 10 0000

 1 000 00 1 0 0000

 1000 0001 0000

 0 10 0 1 0 0 0 0 0 0 0

 40X24 0 10 0 0 1 00 0000012; (4 3)

 0 100 00 1 0 0000

 0 10 0 0 001 0 0 0 0

 0 01 0 1 0 0 0 0 0 0 0

 00(10( 010 0000 ((
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 0 0 1 0 0 0 1 0 0 0 0 0

 00 1 0 000 1 0000

 0001 1000 0000

 000 1 1 01 00 0000

 000 1 00 1 0 0000

 4AX24 0 0 0 1 0001 0000 0 12; (4.3) 4OX24 ~~~~~~~~~~~~Cont.
 0000 0000 1000

 0000 0000 0100

 0000 0000 0010

 -1 0 0 0 0 -1 0 0 0 -1 0 0 0 0 -1 1 0 0 0

 -1 -1 0 0 -1 -1 0 0 0 0 -1 0 0 0 0 -1 0 1 0 0

 -1 -100 -1 -1 00 0 0 -1 -1 00 -1 -1 0010

 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 0 0 0 1

 A3 = 012
 1fX40 0 1 1 10 1 1 1 0 1 1 1 1 0 0 0 0 0 (4.4)

 0 011 0 0 11 1 1 0 1 11 1 0 0000

 0 011 0 0 1 1 1 1 0 0 1 1 0 0 0000

 010 0 1 1 00011000110 0 0000

 A4 = [14 -I4] 0I2; (4.5)
 9X 16

 For the data in Table 1, these estimates are given by

 K1 1 0.208

 K12 0.328

 K13 0.408

 F = K14 = 0.596 (4.6)
 K21 0.297

 K22 0.332

 K93 0.386

 _K24- _0.789

 where kih is the estimate of the agreement measure in the ith sub-population associated
 with the hth set of weights shown in Table 2. In addition, the estimated covariance matrix
 of F is given by
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 0.2546 0.2122 0.1868 0.1442

 0.2122 0.4005 0.3862 0.2912 0
 0.1868 0.3862 0.5200 0.3832

 VF = 0.1442 0.2912 0.3832 0.5700 X 10-2. (4 7)
 0.6163 0.5582 0.5046 0.2185

 0.5582 0.6879 0.6544 0.3010

 ? 0.5046 0.6544 1.0030 0.4147

 0.2185 0.3010 0.4147 0.7720

 The test statistics for the hierarchical hypotheses in (3.11) are displayed in Table 4.
 These results indicate that all increases in successive agreement measures within the

 Winnipeg patient group are significant (a = 0.05); but for the New Orleans patient group,
 the only significant (a = 0.05) increase in agreement pertained to the final set of weights.
 Thus, the neurologists are exhibiting significant disagreement between diagnoses (1,2),
 (2,3) and (3,4) in the Winnipeg group and significant disagreement between diagnoses
 (2,3) in the New Orleans group, as evidenced by the inflated frequencies in these off-diagonal
 cells in Table 1. On the other hand, the estimates in (4.6) suggest that the hierarchical

 Table 4

 STATISTICAL TESTS FOR HIERARCHICAL HYPOTHESES

 Hypothesis D.F. QC

 Combined Patient Groups

 K12 K11 K22 K21 2 6.89*

 13 12' 23 K22 2 S.15

 14 1 A; 24 23 28.13**

 Winnipeg Patients (1)

 K12 =11 1 6.20**

 13 =12 1 4.38*

 K14 =13 1 10.96**

 New Orleans Patients (2)

 K22 =21 1 0.69

 K23 =22 1 0.76

 K24 =23 1 17.17**

 * means significant at a = 0.05;
 ** means significant at a = 0.01.
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 170 BIOMETRICS, MARCH 1977

 kappa measures within both patient groups exhibit the same increasing trend. Since the

 estimated variances of the kappa statistics are much larger for the New Orleans patient

 group (due to the smaller sample size), the agreement patterns may indeed be essentially

 the same in both patient groups.

 If the two neurologists are indeed exhibiting the same agreement patterns with respect

 to the weights given in Table 2 within the two groups of patients, then under (3.5) the

 Kih } satisfy the following hypotheses from (3.9)

 HSAI1E,1 KUZb = K2h for t = 1, 2, 3, 4. (4.8)

 Test statistics for these hypotheses both individually and jointly are presented in Tfable 5.
 The results in Tables 4 and 5 suggest that a reduced model can be used to combine

 parameters which are essentially equivalent. For this purpose, the agreement statistics
 in (4.6) can be modeled by

 1 0 0 0 0

 0 1 ? ? ? 0K1

 KIc 0 0 1 0 0 ,

 EAIFl = X 0 0 0 1 0 K3 (4.9)

 K4

 0 1 0 0 0 _5

 0 0 1 0 0

 where "EA" denotes "asymptotic expectation." For this model, the goodness-of-fit statistic

 is Q = 2.27 with d.f. = 3. Thus, this reduced model provides a satisfactory characterization

 of the variation among these agreement measures. Specific test statistics for the cor-
 responding hypotheses in (3.10) and (3.11) pertaining to the model X in (4.9) are given in

 Table 6. These results suggest that all the parameters are significantly (a = 0.01) different

 from zero, and moreover, are significantly (a = 0.05) different from each other. Further-

 more, by reducing the model to these smoothed estimates, the marginally significant

 (a = 0.10) difference between K14 and K24 in Table 5 is now significant (a = 0.05) for the

 Table 5

 STATISTICAL TESTS BETWEEN PATIENT SUB-POPULATIONS

 Hypothesis D.F. Q

 Kl =2h for h = 1,2,3,4. 4 7.15

 K11 K21 1 0.90

 K12 K22 1 0.00

 K13 = K23 1 0.03

 K14 =24 1 2.77
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 Table 6

 STATISTICAL TESTS FOR MODEL X

 Hypothesis D,F, QC Hypothesis D.F.

 K =K 1 5.40* Ka = 0 1 31.05**
 2 11

 K = K 1 4.92* K = 0 1 40.71** 3 22

 K = K 1 12.33** K = 0 1 45.49**

 K = K4 1 4.88* K = 0 1 72.44**

 K = 0 1 94.97**

 * means significant at ot = 0.05;
 * means significant at ot = 0.01.

 comparison of K4 and K5 in this final model. Finally, the predicted values for the Ki,, } based
 on the fitted model (4.9) are displayed in Table 7 together with their corresponding estimated
 standard errors.

 Thus, these results suggest that the diagnostic criteria are not very distinct with respect

 to their usage by these two neurologists. In addition to bias at the macro stage, i.e., con-
 sidering only the overall marginal proportions, these observers exhibited significant dis-
 agreement at the micro state, i.e., considering each individual subject, in specifying a
 diagnosis. Only with respect to the relatively relaxed criterion corresponding to the fourth
 set of weights do the kappa statistics indicate a "moderate" to "substantial" level of
 interobserver reliability.

 5. Discussion

 In some applications, one may also be interested in a set of weights which assign varying

 degrees of partial credit to the off-diagonal cells depending on the extent of the disagree-
 ment, rather than successively combining adjoining categories as shown in Table 2. For

 Table 7

 SMOOTHED ESTIMATES OF AGREEMENT UNDER MODEL X

 Sub-population 1 2

 Agreement Estimate Estimated Estimate Estimated

 Weights Statistic Under X Standard Error Under X Standard Error

 Wij Kil 0.236 0.042 0.236 0.042

 w2j Ki2 0.311 0.049 0.311 0.049

 W3j Ki3 0.383 0.057 0.383 0.057

 W. Ki. 0.579 0.068 0.790 0.081 4j i4
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 Table 8

 ALTERNATIVE WEIGHTS FOR OVERALL AGREEMENT MEASURES

 Weights jlj 2j

 Observer 2 2

 Diagnostic 1 2 3 4 1 2 3 4
 Class

 1 1 0 0 0 1 0 i ?

 2 0 1 0 0 ? 1 i
 Observer 1

 3 0 0 1 0 i i 1 ?

 4 0 0 0 1 0 i 1? 1

 example, the weights w2j in Table 8 are directly analogous to those discussed in Cohen
 [1968], Fleiss, Cohen and Everitt [1969] and Cicchetti [1972], which were used to generate

 weighted kappa and C statistics. For the data in Table 1, these estimates are given by

 K11 0.208

 F = K12 = 0.315 (5.1)

 K21 0.297

 K22 _ 0.407_

 where the {KiJ estimate the perfect agreement kappa measure and the { i,} estimate
 the partial-credit weighted kappa agreement measure between the two neurologists in the

 two patient populations. A more extensive analysis of these data under the weights in

 Table 8 is given in Landis [1975] and Landis et al. [1976].
 Although the methodology for the assessment of observer agreement developed ill this

 paper is quite general, these procedures have been illustrated with an example involving

 only two observers. However, for situations in which either the number of observers d

 or the number of response categories L is moderately large, the number of possible multi-
 variate response profiles r = Ld becomes extremely large. Consequently, the matrices
 required to implement the GSK procedures directly may be outside the scope of computa-
 tional feasibility. In addition, for each of the s sub-populations many of the r possible
 response profiles will not necessarily be observed in the respective samples so that cor-

 responding cell frequencies are zero. Thus, in such cases, specialized computing procedures
 are required to obtain the estimates of the pertinent functions.

 One alternative approach for handling such very large contingency tables in which
 most of the observed cell frequencies are zero is discussed in Landis and Koch [1977].
 In this regard, the same estimators which would need to be obtained from the conceptual
 multidimensional contingency table can be generated by first forming appropriate indicator

 variables of the raw data from each subject and then computing the across-subject arith-
 metic means. Subsequent to these preliminary steps, the usual matrix operations discussed
 in Appendix 1 in Koch et al. [1977] can then be applied to these indicator variable means
 to determine the required measures of observer agreement. These alternative computa-
 tions involving raw data, as well as the extended GSK procedures summarized in Appendix 1
 in Koch et al. [1977] can all be performed by a recently developed computer program
 (GENCAT) discussed in Landis, et al. [1976].
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 La Mlesure de la Concordance Entre Observations pour des Donnees en Categories

 Resume

 Particle expose une methodologie statistique generate pour l'analyse de donnees multi-
 variates en categories provenant d'etudes de fiabilite d'observateurs. La procedure fait principale-
 ment appel a la construction de fonctions des proportions observees traduisant la concordance
 des observateurs entre eux et a la construction de statistiques de tests pour des hypotheses impli-
 quant ces fonctions. On present des tests pour des biais entre observateurs en fonction de l'homo-
 geneit' marginale du premier ordre et on construit des mesures de concordance entre observateurs
 comme des statistiques generalisant celies du type kappa. On illustre ces procedures avec an
 exemple de diagnostic clinique provenant de la litterature epidemiologique.
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