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Abstract 

We developed three machine learning models that predict hour-by-hour probabilities of a future 

lapse back to alcohol use with increasing temporal precision (i.e., lapses in the next week, next 

day, and next hour). Model features were based on raw scores and longitudinal change in 

theoretically implicated risk factors collected through ecological momentary assessment 

(EMA). Participants (N =151; 51% male; mean age = 41; 87% White, 97% Non-Hispanic) in 

early recovery (1–8 weeks of abstinence) from alcohol use disorder provided 4x daily EMA for 

up to three months. We used grouped, nested cross-validation to select best models and evaluate 

the performance of those best models. Models yielded median areas under the receiver 

operating curves (auROCs) of .89, .90, and .93 in the 30 held-out test sets for week, day, and 

hour level models, respectively. Some feature categories consistently emerged as being globally 

important to lapse prediction across our week, day, and hour level models (i.e., past use, future 

self-efficacy). However, most of the more punctate, time-varying constructs (e.g., craving, past 

stressful events, arousal) appear to have greater impact within the next hour prediction model. 

This research represents an important step toward the development of a smart (machine 

learning guided) sensing system that can both identify periods of peak lapse risk and 

recommend specific supports to address factors contributing to this risk. 

General scientific summary: This study suggests that densely sampled self-report data 

can be used to predict lapses back to alcohol use with varying degrees of temporal precision. 

Additionally, the contextual features contributing to risk of lapse may offer important insight 

for treatment matching through a digital therapeutic. 

Keywords: ecological momentary assessment, digital therapeutics, alcohol use 

disorder 
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Machine learning models for temporally precise lapse prediction in alcohol use 

disorder 

Introduction 

Over 30 million adults in the United States (US) had an active alcohol use disorder 

(AUD) in 2021, and 23.3% reported engaging in past-month binge drinking (SAMHSA Center 

for Behavioral Health Statistics and Quality, 2021). Alcohol ranks as the third leading 

preventable cause of death in the US, accounting for approximately 140,000 fatalities (Centers 

for Disease Control and Prevention (CDC), n.d.) and economic costs that exceed $249 billion 

annually (Substance Abuse and Mental Health Services Administration (US) & Office of the 

Surgeon General (US), 2016). 

Existing clinician-delivered treatments for AUD that were derived from Marlatt’s 

relapse prevention model (Marlatt & Gordon, 1985) are effective when delivered (e.g., 

cognitive-behavioral therapy, mindfulness-based relapse prevention (Bowen et al., 2014)). 

Unfortunately, fewer than 1 in 20 adults with an active AUD receive any treatment 

(SAMHSA Center for Behavioral Health Statistics and Quality, 2021). Even more 

concerning, failure to access treatment is associated with demographic factors including 

race, ethnicity, geographic region, and socioeconomic status, which further increase mental 

health disparities (Office of the Surgeon General (US) et al., 2001). This treatment gap and 

associated disparities stem from well-known barriers to receiving clinician-delivered mental 

healthcare related to affordability, accessibility, availability, and acceptability (Jacobson et 

al., 2022). 

Digital therapeutics may help to overcome these barriers associated with in-person, 

clinician-delivered treatments. Digital therapeutics provide evidence-based interventions and 
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other supports via smartphones to prevent, treat, or manage a medical disorder, either 

independently or in conjunction with traditional treatments (Jacobson et al., 2022). They offer 

highly scalable, on-demand therapeutic support that is accessible whenever and wherever it is 

needed most. Several large, randomized controlled trials have confirmed that digital 

therapeutics for AUD improve clinical outcomes (Campbell et al., 2014; Gustafson et al., 

2014; Jacobson et al., 2022). Additionally, US adults (including patients with AUD (Wyant et 

al., 2023)) display high rates of smartphone ownership (over 85% in 2021), with minimal 

variation across race, ethnicity, socioeconomic status, and geographic settings (Center, 2021). 

Therefore, digital therapeutics may not only mitigate in-person treatment barriers but also 

combat associated disparities (Jacobson et al., 2022). 

Improving Digital Therapeutics via Personal Sensing 

Despite the documented benefits of digital therapeutics, their full potential has not yet 

been realized. Patients often don’t engage with digital therapeutics as developers intended, and 

long-term engagement may not be sustained or matched to patients’ needs (Hatch et al., 2018; 

Jacobson et al., 2022). The substantial benefits of digital therapeutics come from easy, 24/7 

access to their intervention and other support modules. However, the burden falls primarily on 

the patient to identify the most appropriate modules for them in that specific moment during 

their recovery. 

This difficulty is magnified by the dynamic, chronic, and relapsing nature of AUD 

(Brandon et al., 2007). Numerous risk and protective factors interact in complex, non-linear 

ways to influence the probability, timing, and severity of relapse (i.e., a goal-inconsistent 

return to frequent, harmful alcohol use; Witkiewitz & Marlatt, 2007). Factors such as urges, 

mood, lifestyle imbalances, self-efficacy, and motivation can all vary over time. Social 
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networks may evolve to become more protective or risky, and high-risk situations can arise 

unexpectedly. Consequently, both relapse risk and the factors driving that risk fluctuate over 

time. 

Successful, continuous monitoring of risk for relapse and its contributing factors would 

enable patients to adapt their lifestyle, behaviors, and supports to their changing needs. 

Successful monitoring could also direct patients to engage with the most appropriate digital 

therapeutic modules, addressing the unique risks present at any given moment throughout their 

recovery. Such continuous monitoring is now feasible via personal sensing (i.e., in-situ data 

collection via sensors embedded in individuals’ daily lives) (Bae et al., 2018; Chih et al., 2014; 

Epstein et al., 2020; Moshontz et al., 2021; Soyster et al., 2022; Wyant et al., 2023). 

The current project focuses explicitly on using ecological momentary assessment 

(EMA) for monitoring risk of return to alcohol use. EMA can be easily implemented with only 

a smartphone. Moreover, comparable item responses can be collected consistently across 

different hardware and operating systems. Thus, EMA can be incorporated essentially 

identically into any existing or future smartphone-based digital therapeutic. EMA, like other 

personal sensing methods, can support the frequent, in-situ, longitudinal measurement 

necessary for monitoring fluctuating relapse risk. Long-term monitoring with EMA has been 

well-tolerated by individuals with AUD (Wyant et al., 2023). Additionally, previous research 

has validated the use of EMA to measure known risk and protective factors for relapse, 

including craving (Dulin & Gonzalez, 2017), mood (Russell et al., 2020), stressors (Wemm et 

al., 2019), positive life events (Dvorak et al., 2018), and motivation/efficacy (Dvorak et al., 

2014). EMA offers privileged access into these and other subjective factors that may be difficult 

to quantify reliably through other sensing methods. 
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Promising Preliminary Research 

Preliminary research is now emerging that uses EMA responses as features in machine 

learning models to predict the probability of future alcohol use (Bae et al., 2018; Chih et al., 

2014; Soyster et al., 2022; Walters et al., 2021). This research is important because it rigorously 

required strict temporal ordering necessary for true prediction, with features measured before 

alcohol use outcomes. It also used resampling methods (e.g., cross-validation) that prioritize 

model generalizability to increase the likelihood these models will perform well with new 

people. 

Despite this initial promise, several important limitations exist. Some prediction models 

have been trained using convenience samples (e.g., college students) (Bae et al., 2018; Soyster 

et al., 2022). Other models have been developed to predict hazardous alcohol use in non-

treatment-seeking populations (Walters et al., 2021). In both these instances, features that 

predict planned or otherwise intentional alcohol use among individuals not motivated to change 

their behavior may not generalize to people in AUD recovery. Moreover, individuals who have 

not yet begun to contemplate and/or commit to behavior change regarding their alcohol use are 

unlikely to use digital therapeutics designed for AUD recovery (Prochaska et al., 1992). 

A handful of other models have been trained to predict putative precursors of substance 

use, such as craving (Burgess-Hull et al., 2022; Dumortier et al., 2016) and stress (Epstein et 

al., 2020). Although craving and stress may be associated with substance use, their relationships 

with relapse are complex, inconsistent, and not always very strong (Fronk et al., 2020; Sayette, 

2016). For these reasons, we believe that explicit substance use may be a better target for 

prediction. 

With respect to explicit substance use, we also argue that models that predict lapses (i.e., 
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single instances of goal-inconsistent substance use) rather than relapse may be preferred. 

Lapses are clearly defined, observable, and have temporally precise onsets and offsets. 

Conversely, definitions of relapse vary widely (Witkiewitz & Marlatt, 2007), and it is difficult 

to delineate precisely when relapse begins or ends. Lapses always precede relapse and therefore 

may serve as an early warning sign for intervention. Finally, maladaptive responses to a lapse 

(e.g., abstinence violation effects; (Marlatt & Gordon, 1985)) can undermine recovery by 

themselves, making lapses clinically meaningful events to detect and address. 

An early alcohol lapse prediction model developed by Gustafson and colleagues (Chih 

et al., 2014) provided the foundation on which our current project builds. Participants 

completed EMAs once per week for 8 months while using a digital therapeutic after discharge 

from an inpatient treatment program for AUD. These EMAs were used as features in a 

machine learning model to predict lapses. However, the temporal precision for both the 

features and outcome was coarse. Model predictions were updated only once per 

week at most, and lapse onsets could occur anytime within the next two weeks. This 

coarseness restricts the model from being used to implement just-in-time interventions 

(e.g., guided mindfulness or other stress reduction techniques, urge surfing) that are well-

suited to digital therapeutics. 

The Current Study 

The current study addresses these limitations of previously developed prediction 

models. We trained our models using participants in early recovery from moderate to severe 

AUD who reported a goal of alcohol abstinence. We developed three separate models that 

provide hour-by-hour probabilities of a future lapse back to alcohol use with increasing 

temporal precision: lapses in the next week, next day, and next hour. Model features were 
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engineered from raw scores and longitudinal change in responses to 4X daily EMAs. These 

features were derived to measure theoretically-implicated risk factors and contexts that have 

considerable support as predictors of lapses including past use, craving, past pleasant events, 

past and future risky situations, past and future stressful events, emotional valence and 

arousal, and self-efficacy (Fronk et al., 2020; for reviews, see Marlatt & Gordon, 1985; 

Witkiewitz & Marlatt, 2007). 

In this study, we characterize the performance of these three prediction models in 

held-out data (i.e., for observations from participants who were not used to train the 

models). We also evaluated the relative feature importance of key relapse prevention 

constructs in the models as part of the model validation process and to contribute to the 

relapse prevention literature. This research represents an important step toward the 

development of a “smart” (machine learning guided) sensing and prediction system that can 

be embedded within a digital therapeutic both to identify periods of peak lapse risk and to 

recommend specific supports to address factors contributing to this risk. 

Method 

Transparency and Openness 

We adhere to research transparency principles that are crucial for robust and replicable 

science. We reported how we determined the sample size, all data exclusions, all manipulations, 

and all study measures. We provide a transparency report in the supplement. Finally, our data, 

analysis scripts, annotated results, questionnaires, and other study materials are publicly 

available (https://osf.io/w5h9y/). 

Our study design and analyses were not pre-registered. However, we restricted many 

researcher degrees of freedom via cross-validation. Cross-validation inherently includes 

https://osf.io/w5h9y/
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replication; models are fit on held-in training sets, decisions are made in held-out validation 

sets, and final performance is evaluated on held-out test sets. 

Participants 

We recruited 151 participants in early recovery (1-8 weeks of abstinence) from AUD 

in Madison, Wisconsin, US. This sample size was determined based on traditional power 

analysis methods for logistic regression (Hsieh, 1989) because comparable approaches for 

machine learning models have not yet been validated. Participants were recruited through print 

and targeted digital advertisements and partnerships with treatment centers. We required 

participants: 

1. were age 18 or older, 

2. could write and read in English, 

3. had at least moderate AUD (>= 4 self-reported DSM-5 symptoms), 

4. were abstinent from alcohol for 1-8 weeks, and 

5. were willing to use a single smartphone (personal or study provided) while on study. 

We also excluded participants exhibiting severe symptoms of psychosis or paranoia. 

Procedure 

Participants completed five study visits over approximately three months. After an 

initial phone screen, participants attended an in-person screening visit to determine eligibility, 

complete informed consent, and collect self-report measures. Eligible, consented participants 

returned approximately one week later for an intake visit. Three additional follow-up visits 

occurred about every 30 days that participants remained on study. Participants were expected 

to complete four daily EMAs while on study. Other personal sensing data streams 

(geolocation, cellular communications, sleep quality, and audio check-ins) were collected as 
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part of the parent grant’s aims (R01 AA024391). 

Measures 

Ecological Momentary Assessments 

Participants completed four brief (7-10 questions) EMAs daily. The first and last EMAs 

of the day were scheduled within one hour of participants’ typical wake and sleep times. The 

other two EMAs were scheduled randomly within the first and second halves of their typical 

day, with at least one hour between EMAs. Participants learned how to complete the EMA and 

the meaning of each question during their intake visit. 

On all EMAs, participants reported dates/times of any unreported past alcohol use. 

Next, participants rated the intensity of four recent experiences: 

• craving [“How intense was your greatest urge to drink?”], 

• risky situations [“Did you encounter any risky situations (people, places, or things)? If 

yes, rate the intensity of the situation.”], 

• stressful events [“Has a hassle or stressful event occurred? If yes, rate the intensity of 

the event.”], 

• pleasant events [Has a pleasant or positive event occurred? If yes, rate the intensity of 

the event.”]. 

For each of these experiences, participants rated the maximum intensity since their 

last EMA on a 12-point ordinal scale (mid- and end-point anchors of “Mild”, “Moderate”, 

and “Strong”). If they did not experience an event since their last EMA, participants selected 

“No” to indicate that no experience occurred for that respective question. 

Next, participants rated their current affect using 11-point bipolar scales measuring 

valence (end-point anchors of “Unpleasant/Unhappy” to “Pleasant/Happy”) and arousal (end-
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point anchors of “Calm/Sleepy” to “Aroused/Alert”). 

On the first EMA each day, participants used an 11-point bipolar scale (end-point 

anchors of “Very Unlikely” to “Very Likely”) to rate the likelihood of: 

• future risky situations [“How likely are you to encounter risky situations (people, 

places, or things) within the next week?”], 

• future stressful events [“How likely are you to encounter a stressful event within the 

next week?”], 

• abstinence efficacy [“How likely are you to drink any alcohol within the next week?”]. 

Individual Differences 

We collected self-report information about demographics (age, sex, race, ethnicity, 

education, marital status, employment, and income) and clinical characteristics (AUD 

milestones, number of quit attempts, lifetime AUD treatment history, lifetime receipt of AUD 

medication, DSM-5 AUD symptom count, and current drug use (WHO ASSIST Working 

Group, 2002)). This information was collected primarily to characterize the sample and to 

evaluate the diversity of the training data. We also included demographic features in our 

models to quantify the importance of relapse prevention constructs beyond these static 

characteristics, given known disparities in AUD and other health outcomes (Jacobson et al., 

2022)1. 

Data Analytic Strategy 

Data preprocessing, modeling, and Bayesian analyses were done in R using the 

tidymodels ecosystem (Kuhn & Wickham, 2020). Models were trained and evaluated using 

high-throughput computing resources provided by the University of Wisconsin Center for 

High Throughput Computing (Center for High Throughput Computing, 2006). 
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Lapse Labels 

We predicted future lapses in three prediction window widths: one week, one day, 

and one hour. Prediction windows were updated hourly. All classification models provide 

hour-by-hour predictions of future lapse probability for all three window widths. 

For each participant, the first prediction window for all three widths began at midnight 

on their second day of participation and ended one week, one day, or one hour later. This 

ensured at least 24 hours of past EMAs for future lapse prediction in these first windows. 

Subsequent windows for each participant were created by repeatedly rolling the window 

start/end forward one hour until the end of their study participation (i.e., each participant’s last 

prediction window started one week, one day, or one hour before their last recorded EMA). 

We labeled each prediction window as lapse or no lapse using participants’ reports from 

the EMA question “Have you drank any alcohol that you have not yet reported?”. If participants 

answered yes to this question, they entered the date and hour of the start and end of the drinking 

episode. During monthly follow-up sessions, participants could review and correct their lapses 

reported by EMA and report to staff any additional lapses. 

A prediction window was labeled lapse if the start date/hour of any drinking episode 

fell within that window. A window was labeled no lapse if no alcohol use occurred within that 

window +/- 24 hours. If no alcohol use occurred within the window but did occur within 24 

hours of the start or end of the window, the window was excluded. We used this conservative 

24-hour fence for labeling windows as no lapse (vs. excluded) to increase the fidelity of these 

labels. Given that most windows were labeled no lapse, and the outcome was highly 

unbalanced, it was not problematic to exclude some no lapse events to further increase 

confidence in those labels. 
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Feature Engineering 

Features were calculated using only data collected before the start of each prediction 

window to ensure our models were making true future predictions. We created features for both 

baseline and full models. The baseline models were developed to determine how well we could 

predict lapses using a simple model based only on the participants’ histories of previous lapses. 

The full models used all EMA responses combined with demographic and day/time features. 

The baseline models had only one dummy-coded feature: lapse frequency (high vs. low). 

The median number of lapses across participants during the study period was 1. Therefore, the 

lapse frequency feature was coded low when the participant had a history of 1 or fewer lapses 

before that prediction window. This feature was coded high when the participant had more than 

1 lapse before that window. 

Features for the full model were derived from three sources: 1) common demographic 

characteristics, 2) day of the week and hour of the day at prediction window onset, and 3) 

previous EMA responses. We created a quantitative feature for age, and dummy-coded features 

for sex (male vs. female), race/ethnicity (White/Non-Hispanic vs. other), marital status (never 

married vs. married vs. other), and education (high school or less vs. some college vs. 4-year 

degree or more). We created dummy-coded features to indicate time of day (5pm - midnight vs. 

any other time) and day of week that the prediction window began. 

We created raw EMA features for varying scoring epochs before the start of the 

prediction window for all EMA items excluding the alcohol use question. For the six EMA 

questions that appeared on all four daily EMAs, we used five scoring epochs of 12, 24, 48, 72, 

and 168 hours. For the three EMA questions that only appeared on the morning EMA, we used 

three scoring epochs of 48, 72, and 168 hours. Raw features included min, max, and median 
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scores for each EMA question across all EMAs in each epoch for that participant. We 

calculated change features by subtracting the participant’s mean score for each EMA question 

(using all EMAs collected before the start of the prediction window) from the associated raw 

feature. These change features allowed us to capture within-subject effects by comparing recent 

EMA responses relative to an individual’s own baseline. For both raw and change features, the 

feature was set to missing (and later imputed; see below) if no responses to the specific EMA 

question were provided by the participant within the associated scoring epoch. 

We also created raw and change features based on the most recent response for each 

EMA question (excluding the alcohol use question). This generated two features for each EMA 

question: 1) raw value of the most recent previous response, and 2) difference between that raw 

value and the mean response to that EMA question over all EMAs collected before that 

prediction window. 

We also calculated raw and change rate features from previously reported lapses. We 

calculated lapse rate features using the same five scoring epochs described earlier. Raw lapse 

rate features were generated by dividing the total number of previously observed lapses within a 

scoring epoch by the duration of that epoch. For change rate features, we subtracted the rate of 

previous lapses for that participant (i.e., total number of lapses while on-study divided by total 

hours on-study before the prediction window) from their associated raw lapse rate. We 

employed a similar approach to calculate raw and change rate of missing EMAs (i.e., number of 

full EMA surveys that were requested but not completed in a scoring epoch / duration of 

epoch). 

Other generic feature engineering steps included: 1) imputing missing data (median 

imputation for numeric features, mode imputation for nominal features); 2) dummy coding for 
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nominal features; and 3) removing zero-variance features. Medians/modes for missing data 

imputation and identification of zero variance features were derived from held-in (training) data 

and applied to held-out (validation and test) data (see Cross-validation section below). We 

recognize that median/mode imputation is a coarse method for handling missing data; however, 

computational costs of more sophisticated methods (e.g., KNN imputation, multiple imputation) 

were not practical for this study. A sample feature engineering script (i.e., tidymodels recipe) 

containing all feature engineering steps is available on our OSF study page. 

Model Training and Evaluation 

Statistical Algorithm and Hyperparameters. We trained and evaluated six separate 

classification models: one baseline and one full model for each prediction window (week, day, 

and hour). We initially considered four well-established statistical algorithms (XGBoost, 

Random Forest, K-Nearest Neighbors, and Elastic Net) that vary across characteristics expected 

to affect model performance (e.g., flexibility, complexity, handling higher-order interactions 

natively) (Kuhn & Johnson, 2018). However, preliminary exploratory analyses suggested that 

XGBoost consistently outperformed the other three algorithms2. Furthermore, the Shapley 

Additive Explanations (SHAP) method, which we planned to use for explanatory analyses of 

feature importance in our full models, is optimized for XGBoost. Consequently, we focused our 

primary model training and evaluation on the XGBoost algorithm only. 

Candidate XGBoost model configurations differed across sensible values for the 

hyperparameters mtry, tree depth, and learning rate using grid search. All configurations used 

500 trees with early stopping to prevent over-fitting. All other hyperparameters were set to 

tidymodels package defaults. Candidate model configurations also differed on outcome 

resampling method (i.e., up-sampling and down-sampling of the outcome using majority/no 



MACHINE LEARNING FOR LAPSE PREDICTION 16 
 

lapse to minority/lapse ratios ranging from 1:1 to 5:1). We calibrated predicted probabilities 

using the beta distribution to support optimal decision-making under variable outcome 

distributions (Kull et al., 2017). 

Model training and evaluation used all participants (N = 151), regardless if they had 

any positive labels (i.e., lapses) because XGBoost itself does not use grouping of observations 

within participants. This grouping is handled instead by a participant-grouped cross-

validation procedure (below). 

Performance Metric. Our primary performance metric for model selection and 

evaluation was area under the Receiver Operating Characteristic Curve (auROC) (Kuhn & 

Johnson, 2018). auROC indexes the probability that the model will predict a higher score for a 

randomly selected positive case (lapse) relative to a randomly selected negative case (no lapse). 

This metric was selected because it 1) combines sensitivity and specificity, which are both 

important characteristics for clinical implementation; 2) is an aggregate metric across all 

decision thresholds, which is important because optimal decision thresholds may differ across 

settings and goals; and 3) is unaffected by class imbalance, which is important for comparing 

models with differing prediction window widths and levels of class imbalance. 

Cross-validation. We used participant-grouped, nested cross-validation for model 

training, selection, and evaluation with auROC. Grouped cross-validation assigns all data from 

a participant as either held-in or held-out to avoid bias introduced when predicting a 

participant’s data from their own data. Nested cross-validation uses two nested loops for 

dividing and holding out folds: an outer loop, where held-out folds serve as test sets for model 

evaluation; and inner loops, where held-out folds serve as validation sets for model selection. 

Importantly, these sets are independent, maintaining separation between data used to train the 
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models, select the best models, and evaluate those best models. Therefore, nested cross-

validation removes optimization bias from the evaluation of model performance in the test sets 

and can yield lower variance performance estimates than single test set approaches (Jonathan et 

al., 2000). 

We used 1 repeat of 10-fold cross-validation for the inner loops and 3 repeats of 10-

fold cross-validation for the outer loop. Best model configurations were selected using 

median auROC across the 10 validation sets. Final performance evaluation of those best 

model configurations used median auROC across the 30 test sets. We report median auROC 

for our six best model configurations in the test sets. For completeness, we also report 

auROCs for these models from the validation sets in the Supplement. In addition, we report 

other key performance metrics for the best full model configurations including sensitivity, 

specificity, balanced accuracy, positive predictive value (PPV), and negative predictive 

value (NPV) from the test sets (Kuhn & Johnson, 2018). 

Bayesian Estimation of auROC and Model Comparisons 

We used a Bayesian hierarchical generalized linear model to estimate the posterior 

probability distributions and 95% Bayesian confidence intervals (CIs) for auROC for the six 

best models. To estimate the probability that the full model outperformed the baseline model, 

we regressed the auROCs (logit transformed) from the 30 test sets for each model as a 

function of model type (baseline vs. full). To determine the probability that full models’ 

performances differed systematically from each other, we regressed the auROCs (logit 

transformed) from the 30 test sets for each full model as a function of prediction window 

width (week vs. day vs. hour). Following recommendations from the tidymodels team (Kuhn, 

2022), we set two random intercepts: one for the repeat, and another for the fold within repeat 
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(folds are nested within repeats for 3x10-fold cross-validation). We report the 95% (equal-

tailed) Bayesian CIs from the posterior probability distributions for our models’ auROCs. We 

also report 95% (equal-tailed) Bayesian CIs for the differences in performance associated with 

the Bayesian comparisons. For more detail on these analyses, see Bayesian Analyses in 

Supplemental Methods section of the Supplement. 

Shapley Additive Explanations for Feature Importance 

We computed Shapley Values (Lundberg & Lee, 2017) to provide a consistent, 

objective explanation of the importance of categories of features (based on EMA questions) 

across our three full models. Shapley values possess several useful properties including: 

Additivity (Shapley values for each feature can be computed independently and summed); 

Efficiency (the sum of Shapley values across features must add up to the difference between 

predicted and observed outcomes for each observation); Symmetry (Shapley values for two 

features should be equal if the two features contribute equally to all possible coalitions); and 

Dummy (a feature that does not change the predicted value in any coalition will have a Shapley 

value of 0). 

We calculated Shapley values from the 30 test sets using the SHAPforxgboost package 

that provides Shapley values in log-odds units for binary classification models. We averaged the 

three Shapley values for each observation for each feature across the three repeats to increase 

their stability. The additivity property of Shapley values allowed us to create 18 feature 

categories from the 286 separate features. We created separate feature categories for each of the 

nine EMA questions (excluding the alcohol use question), the rates of past alcohol use and 

missing surveys, the time of day and day of the week of the start of the prediction window, and 

the five demographic variables included in the models. For the EMA questions and rates of past 
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alcohol use and missing surveys, these categories included all individual raw and change 

features across the three to five scoring epochs (see Feature Engineering above) and the most 

recent response. To calculate the local (i.e., for each observation) importance for each category 

of features, we added Shapley values across all features in a category, separately for each 

observation. To calculate global importance for each feature category, we averaged the absolute 

value of the Shapley values of all features in the category across all observations. These local 

and global importance scores based on Shapley values allow us to answer questions of relative 

feature importance. However, these are descriptive analyses because standard errors or other 

indices of uncertainty for importance scores are not available for Shapley values. 

Results  

Demographic and Clinical Characteristics 

One hundred ninety-two participants were eligible. Of these, 191 consented to 

participate, and 169 subsequently enrolled in the study. Fifteen participants discontinued before 

the first monthly follow-up visit. We excluded data from one participant who did not maintain a 

goal of abstinence during their participation. We also excluded data from two participants due 

to evidence of careless responding and unusually low compliance. Our final sample consisted of 

151 participants (see Figure S1 for more detail on enrollment and disposition). 

The final sample included approximately equal numbers of men (N=77; 51.0%) and 

women (N=74; 49.0%) who ranged in age from 21 - 72 years old. The sample was majority 

White (N=131; 86.8%) and non-Hispanic (N=147; 97.4%). Participants self-reported a median 

of 9.0 DSM-5 symptoms of AUD (mean=8.9; SD=1.9; range=4.0-11.0) and a median of 4.0 

previous quit attempts (mean=5.5; SD=5.8; range=0.0-30.0). Most participants (N=84; 55.6%) 

reported one or more lapses during participation. The median number of lapses per participant 
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while on-study was 1.0 (mean=6.8; SD = 12.0; range=0.0-75.0). Table 1 provides more detail 

on demographic and clinical characteristics of the sample. 

EMA Compliance, Features, and Prediction Window Labels 

Participants on average completed 3.1 (SD=0.6) of the four EMAs each day (78.4% 

compliance overall). Participants completed at least one EMA on 95.0% of days. Across 

individual weeks on-study, EMA compliance percentages ranged from 75.3% - 86.8% 

completion for all of the 4x daily EMAs and from 91.7% - 99.1% for at least one daily EMA 

completed (see Figure S2). 

Using these EMA reports, we created datasets with 270,081, 274,179, and 267,287 

future prediction windows for the week, day, and hour window widths, respectively. Each 

dataset contained 286 features and an outcome labeled as lapse or no lapse. These datasets 

were unbalanced with respect to the outcome such that lapses were observed in 68,467 

(25.4%) week windows, 21,107 (7.7%) day windows, and 1,017 (0.4%) hour windows. 

Features had missing values if the participant did not respond to the relevant EMA 

question during the associated scoring epoch. The median proportions of missing values across 

features were relatively low: 0.020 (range = 0 - 0.121), 0.022 (range = 0 - 0.125), and 0.023 

(range = 0 - 0.127) for the week, day, and hour prediction windows. There were no missing 

values for demographic features, the hour and day of the start of the prediction window, or 

lapse rate and missing survey rate features (see Figure S3 for histograms of missingness). 

Model Performance 

auROC for Baseline Models 

We selected the best baseline model (previous lapse frequency feature only) 

configurations using auROCs from the validation sets. We report the median and IQR auROCs 
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from the validation sets for these best baseline model configurations in Supplemental Results. 

We evaluated these best baseline model configurations using test set performance to remove the 

optimization bias present in performance metrics from validation sets. The median auROC 

across the 30 test sets was moderate for the week (median=0.792, IQR=0.079, range=0.671-

0.915), day (median=0.784, IQR=0.070, range=0.687-0.890), and hour (median=0.779, 

IQR=0.077, range=0.675-0.884) prediction windows. 

We used the 30 test set auROCs to estimate the posterior probability distribution for 

the auROC of these baseline models. The median auROCs from these posterior distributions 

were 0.798 (week), 0.785 (day), and 0.780 (hour). These values represent our best estimates 

for the magnitude of the auROC parameter for each model. The 95% Bayesian CI for the 

auROCs for these models were relatively narrow and did not contain 0.5 (chance 

performance) for any window width: week [0.770-0.822], day [0.757-0.810], hour [0.752-

0.806]. 

auROCs for Full Models 

We next selected the best full model (which included all features) configurations using 

auROCs from the validation sets. We report the median and IQR auROCs from the validation 

sets for these best full model configurations in Supplemental Results. We evaluated these best 

full model configurations using test set performance. The median auROC across the 30 test 

sets was high for the week (median=0.891, IQR=0.043, range=0.785-0.963), day 

(median=0.899, IQR=0.05, range=0.788-0.969), and hour (median=0.929, IQR=0.045, 

range=0.847-0.972) prediction windows. Figure 1 (left panel) displays the ROC curves by 

prediction window derived by aggregating predicted lapse probabilities across all test sets. 

Figure S4 presents the individual ROC curves from each test set. 
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The right panel of Figure 1 displays posterior probability distributions for the auROC 

for the full models by prediction window. The median auROCs from these posterior 

distributions were 0.895 (week), 0.905 (day), and 0.930 (hour). These values represent our best 

estimates for the magnitude of the auROC parameter for each model. The 95% Bayesian CI for 

the auROCs for these models were relatively narrow and did not contain 0.5 (chance 

performance) for any window width: week [0.876-0.910], day [0.888-0.919], hour [0.916-

0.940]. 

Bayesian Comparisons of Baseline vs. Full Models 

We used the posterior probability distributions for the auROCs to formally compare the 

baseline vs. full models (matched for prediction window). The median increase in auROC for 

the full vs. baseline week model was 0.097 (95% CI=[0.081-0.114], yielding a probability of 

1.000 that the full week model had superior performance. The median increase in auROC for 

the full vs. baseline day model was 0.120 (95% CI=[0.102-0.138], yielding a probability of 

1.000 that the full day model had superior performance. The median increase in auROC for the 

full vs. baseline hour model was 0.149 (95% CI=[0.131-0.170], yielding a probability of 1.000 

that the full hour model had superior performance. Figure S5 presents histograms of the 

posterior probability distributions for these model contrasts on auROC. 

Bayesian Comparisons of Full Models by Prediction Window 

We also used the posterior probability distributions for the auROCs for the three 

full models to formally compare the differences in performance by prediction window 

width. The median increase in auROC for the hour vs. the day model was 0.025 (95% 

CI=[0.017-0.034], yielding a probability of 1.000 that the hour (vs. day) model had 

superior performance. The median increase in auROC for the hour vs. the week model was 
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0.035 (95% CI=[0.026-0.045], yielding a probability of 1.000 that the hour model (vs. 

week) had superior performance. The median increase in auROC for the day vs. the week 

model was 0.010 (95% CI=[0.001-0.020], yielding a probability of 0.982 that the day (vs. 

week) model had superior performance. Figure S6 presents histograms of the posterior 

probability distributions for these prediction window width contrasts on auROC. 

Other Performance Metrics for the Full Models 

Figure S7 displays histograms for the predicted probabilities of lapse for all 

observations in the 30 test sets separately by prediction window and true outcome for the full 

models. We evaluated the sensitivity, specificity, balanced accuracy, PPV, and NPV when these 

predicted lapse probabilities were used for binary classification (lapse vs. no lapse) with 

decision thresholds identified by Youden’s Index. All three full models had high sensitivity, 

specificity, balanced accuracy, and NPV (Table 2). PPV, however, notably declined as the 

prediction window width decreased. 

PPV can be increased by increasing the decision threshold; however, increasing the 

decision threshold will also lower the model’s sensitivity. To evaluate the trade-off between 

PPV (i.e., precision) and sensitivity (i.e., recall) across decision thresholds, we created 

Precision-Recall curves by concatenating predicted lapse probabilities across the 30 test sets 

(Figure 2). For example, the dotted lines in Figure 2 depict the sensitivities (0.718, 0.473, and 

0.327 for week, day, and hour models, respectively) associated with decision thresholds that 

yield 0.700 PPV for each model. 

Feature Importance for Full Models 

Global importance (mean |Shapley value|) for feature categories for each full model 

appears in Panel A of Figure 3. Past use was the most important feature category for lapse 
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prediction across prediction window widths. Future abstinence efficacy was also globally 

important across window widths. Time-varying constructs (craving, time of day) appear to have 

more impact in lapse prediction for the hour model compared to the day and week models. 

Sina plots of local Shapley values (i.e., the influence of feature categories on individual 

observations) for each model show that some feature categories (e.g., past pleasant events, 

future stressful events) impact lapse probability for specific individuals at specific times even if 

they are not globally important across all observations (Figure 3, Panels B-D). 

Discussion 

Model Performance 

All baseline models, which used only past frequency of lapses to predict future lapses, 

performed moderately well with auROCs in the upper .70s. These results confirm what we 

would expect: past behavior is a relatively good predictor of future behavior. However, there 

was still substantial room for increased predictive performance. Furthermore, these baseline 

models do not identify specific risk factors contributing to lapse predictions at any moment in 

time for each participant. 

All three full models performed exceptionally well, yielding auROCs of 0.89, 0.90, and 

0.93 for week, day, and hour level models, respectively. auROCs above .9 are generally 

described as having “excellent” performance; the model will correctly assign a higher 

probability to a positive case (e.g., lapse) than a negative case 90% of the time (Mandrekar, 

2010). Bayesian comparisons indicated that these full models performed better than the 

baseline models for the same prediction window. This confirms that EMA can predict future 

alcohol lapses in the next week, next day, and next hour with high sensitivity and specificity 

for new individuals. And, as we describe later, using features that map onto important relapse 
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prevention risk constructs may illuminate momentary contributors to predicted lapses. 

This study addressed several important limitations of previous research to advance 

toward robust sensing and prediction models that can be embedded within digital therapeutics. 

First, our models were trained on a relatively large, treatment-seeking sample of adults in early 

recovery from AUD that closely matches the individuals most likely to benefit from such 

models within a digital therapeutic. Second, we explicitly predicted episodes of goal-

inconsistent alcohol use (i.e., lapses) because features that predict goal-inconsistent use likely 

differ from those that predict other types of alcohol use. Third, we measured EMA features and 

alcohol use with sufficient frequency and granularity to train well-performing models with high 

temporal resolution - specifically, hour-by-hour predicted probabilities for lapses in the next 

week, day, and hour. Fourth, we collected features and outcomes over three months during a 

high risk period (initial remission (Hagman et al., 2022) from AUD). Fifth, we used cutting-

edge resampling methods (grouped, nested, k-fold cross-validation) to provide valid estimates 

of how our models would perform with new individuals. Finally, we used interpretable machine 

learning methods (SHAP (Lundberg & Lee, 2017; Molnar, 2022)) to better understand how our 

models made predictions globally and locally for specific participants at discrete moments in 

time. 

Understanding & Contextualizing Model Performance 

We used SHAP to describe the relative importance of key relapse prevention model 

constructs (represented by categories of features) to predicted lapses in our three full models. 

Some constructs consistently emerged as globally important across week, day, and hour level 

models. Unsurprisingly, the largest contribution to lapse prediction was past use. This is 

consistent with decades of research on relapse precipitants and our understanding of human 
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behavior more generally (i.e., past behavior predicts future behavior) (Marlatt & Gordon, 

1985). Decreases in abstinence self-efficacy were also strongly associated with increased 

probability of future lapses across windows. 

The relative importance of some constructs descriptively differed by window width. 

Punctate, time-varying constructs (e.g., craving, arousal, recent risky situation) had greater 

impact on predicted lapse probabilities in the hour model compared to day or week models. The 

time of day feature was relatively important (top four) in the hour model, such that lapses were 

more likely for hour-level prediction windows that began in the evenings. The day of week 

feature made a small contribution to the hour and day models given that lapses were more likely 

on weekends. The time and day features were not useful in the week model because its 

associated prediction window (a full week) spanned all days and times, making the time and 

day that the window began irrelevant. The increased global importance for all these punctate 

features/constructs to immediate lapse risk likely contributed to the hour model outperforming 

the day and week models. These important global differences in next hour lapse risk also 

highlight the need for just-in-time interventions that can address these imminent but short-lived 

risks. 

The individual, local Shapley values also shed light on the multidimensional and 

heterogeneous nature of lapse risk in our sample. Sina plots of local Shapley values (Figure 3) 

display meaningful ranges of scores for most feature categories. This means that even feature 

categories with lower global importance (e.g., past pleasant events, future stressful events) still 

consequentially impacted predictions for some individuals at specific times. This variability in 

locally important features highlights the potential benefits of recommending optimal 

interventions and other supports that are personalized for that person at that moment in time. 
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Our demographic features did not display high global or local importance. Despite the 

diversity in sex, age, education, and marital status in our sample, these features did not 

meaningfully contribute to lapse prediction. Although this does not preclude these features’ 

predictive utility, it does suggest that other EMA feature categories may be more relevant for 

lapse prediction than these characteristics. Race/ethnicity also did not emerge as globally or 

locally important features. However, the limited representation of participants of color in our 

sample warrants caution in drawing conclusions about the predictive utility of race and 

ethnicity at this time.  

Considerations for Clinical Implementation 

Smart Digital Therapeutics 

We believe these full models may be most effective when embedded in a “smart” 

digital therapeutic that guides patients toward optimal, adaptive engagement to address 

their ongoing and momentary risks. These models can provide the patient’s predicted future 

lapse probability and the features that meaningfully contribute to that probability. We 

consciously selected EMA items that map onto well-known risk factors from the relapse 

prevention literature. Consequently, these outputs can be used to recommend specific 

intervention and support modules that are risk-relevant for each patient - much like a 

clinician would do if they were available in-the-moment. For example, during sensed 

periods of high stress, stress reduction techniques (e.g., guided mindfulness) could be 

recommended. If increased time with risky people or locations is driving lapse risk, the 

digital therapeutic can support patients to attend support meetings, or encourage 

participation in the in-app discussion board. 

Module recommendations can also be tuned more precisely using the patient’s current 
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lapse probability. If increased craving yields a high predicted lapse probability, stimulus control 

modules would be recommended (e.g., remove drinking cues, leave unsafe environment). 

Conversely, if craving is detected but lapse probability is lower, urge management modules that 

permit coping with the craving in-place could be recommended (e.g., urge surfing, distracting 

activities/games). 

Of course, we must first determine how best to provide module recommendations 

such that patients trust and follow the recommendation. Increasing the interpretability and 

transparency of otherwise “black box” machine learning prediction models can improve 

perceptions, but providing complex or unnecessary information may instead undermine trust 

(Molnar, 2022). Additional research using appropriate research designs is needed to optimize 

recommendation messaging to increase adherence and clinical outcomes (Collins, 2018). A 

smart digital therapeutic can potentially improve clinical outcomes in multiple ways. First, 

feedback from the prediction model could improve patient insight and self-monitoring by 

connecting their daily experiences to changing risk. Second, it can remove patient uncertainty 

by guiding selection from the substantial content available. Third, a smart digital therapeutic 

could encourage risk-relevant engagement. Rather than trying to increase overall time using 

the digital therapeutic, patients could be guided to use the supports that specifically target 

their personal risk factors at that moment in time. Thus, smart digital therapeutics are well-

positioned to pursue the precision mental health goal to “provide the right treatment to the 

right patient at the right time, every time” (Kaiser, 2015). 

Categorical Lapse Predictions 

Our models natively provide quantitative predictions of lapse probabilities. These lapse 

probabilities can also be used to make categorical predictions (lapse vs. no-lapse) by 
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applying a decision threshold to the quantitative predicted lapse probabilities (i.e., predict lapse 

when the probability exceeds the decision threshold). 

We observed high sensitivity and specificity for these categorical predictions at a 

decision threshold selected to balance these two performance metrics. However, the PPV 

(proportion of predicted lapses that were true lapses) of these categorical predictions in our full 

models was moderate to very low at this threshold (ranging from .630 down to .025 across 

window widths). For this reason, categorical predictions should be provided to patients with 

extreme caution, if at all. Instead, we favor the quantitative lapse probabilities as risk indicators 

to guide intervention and support recommendations. 

If categorical predictions are necessary, PPV can be improved by raising the decision 

threshold, but this comes at the cost of reduced sensitivity. We explored this trade-off in the 

precision-recall curves displayed in Figure 2. From these curves, it is clear decision thresholds 

that yield higher PPV (e.g., .700) exist for all three full models, but the associated sensitivity 

will be lower (e.g., 0.718, 0.473, and 0.327 for the week, day, and hour models, respectively, at 

this threshold). Clinical implementation of categorical predictions will require selecting an 

optimal decision threshold after weighing the cost of missing true lapses (low sensitivity) vs. 

predicting lapses that subsequently do not occur (low PPV). Different thresholds could be used 

depending on the purpose, context, available resources, or even patient preference. 

Additional Limitations and Future Directions 

Successful clinical implementation of our models will require several important steps 

to address limitations in our work to-date. First, we need to enrich the training data to include 

diversity across race, ethnicity, and geographic region. Our current prediction models may not 

work well for people of color or people from rural communities. Prediction models must use 
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diverse training samples to avoid exacerbating rather than mitigating existing disparities. We 

must also collect data from individuals in later stages of recovery beyond initial remission; 

features that predict lapses may differ in these later periods. We are intentionally addressing 

these issues in a current NIH protocol that recruits nationally for demographic and geographic 

diversity and follows participants for up to 1.5 years into their recovery (Moshontz et al., 

2021). 

The chronic nature of AUD may require sustained use of a sensing and prediction 

system. Consequently, the burden of using such systems must be considered. Participants with 

AUD find three months of 4x daily EMA to be generally acceptable and report that they could 

hypothetically sustain this for at least a year if there were clinical benefits to them (Wyant et 

al., 2023). They also report that 1x daily EMA may be more feasible still (Wyant et al., 2023). 

We plan to develop future prediction models that use only the single morning EMA to contrast 

the assessment burden vs. model performance trade-off between our current models and 

putatively lower burden models. We also plan to train models that use features based on 

passively sensed geolocation and cellular communications data-streams (i.e., meta-data from 

calls and text messages; text message content) that were also collected from our participants. 

These passively sensed signals may be sufficient as inputs to an exceptionally low burden 

prediction model. Alternatively, they can be added to models that also include EMA to 

increase model performance further and/or to reduce the frequency or length of the EMA 

surveys while maintaining comparable performance. 

Our current models predict probabilities of imminent lapses. The hour and day full 

models are well-positioned to identify and recommend just-in-time interventions to address 

these immediate risks. However, the week model may not have sufficient temporal specificity 
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to recommend immediate patient action. Instead, its clinical utility may improve if we shift 

this coarser window width into the future. For example, we could train a model to predict the 

probability of lapse at any point during a week window that begins two weeks in the future. 

This “time-lagged” model could provide patients with increased lead time to implement 

supports that might not be immediately available to them (e.g., schedule therapy appointment, 

request support from an AA sponsor). 

Finally, XGBoost does not take advantage of grouping observations within 

participants or systematic variation unique to individual participants3. Independence of 

observations is not necessary for statistically valid prediction. When observations are 

grouped/repeated within participants, linear mixed effects models or other statistical models 

that can estimate both population-level (fixed) effects and participant-level (random) effects 

may predict better for the participants on which they were trained than would XGBoost. 

However, we are not interested in making predictions for participants in our training set. We 

want to know how well our models will work with new individuals like those that will use 

smart digital therapeutics in the future. 

In some domains, there has been increasing interest in idiographic approaches where 

models are trained and then implemented for the same individual (Fisher et al., 2019; Wright & 

Zimmermann, 2019). Such approaches may also yield superior predictive performance but are 

not possible to implement for outcomes like alcohol use lapse. A person-specific lapse 

prediction model requires a sufficient number of positive labels (i.e., lapses) for that individual. 

It may be too late to prevent relapse if we must wait until an individual has lapsed multiple 

(perhaps many) times to offer help. We believe the most promising approaches may involve 

first developing population-based models and updating these models with person-specific 
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information as the patient uses the system (Zhou et al., 2018). We are pursuing these cutting-

edge models as a near-term future direction. 

In this study, we have demonstrated that sensing and prediction systems can now be 

developed to predict future lapses with high temporal resolution. Important steps still remain 

before these systems can be embedded within smart digital therapeutics and delivered to 

patients. However, the necessary steps are clear and, when completed, these smart digital 

therapeutics hold promise to advance us toward precision mental health solutions that may 

reduce both barriers and disparities in AUD treatment.
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Footnotes 

1Features for income and employment were inadvertently excluded from all models. 

2In early exploratory analyses, we evaluated auROCs of all four algorithms using grouped 

k-fold cross- validation for models based on preliminary feature engineering using the EMAs. 

XGBoost models consis- tently outperformed other algorithms such that we focused all further 

development on XGBoost to reduce the substantial computational time associated with model 

training and evaluation. 

3Although XGBoost ignores participant-level information, we do leverage this information 

to some degree by including change features that anchor participants’ EMA responses to their 

own previous responses. 
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Table 1 

Demographics and Clinical Characteristics 

 N % M SD Range 

Age   41 11.9 21-72 

Sex      

Female 74 49.0    

Male 77 51.0    

Race      

American Indian/Alaska Native 3 2.0    

Asian 2 1.3    

Black/African American 8 5.3    

White/Caucasian 131 86.8    

Other/Multiracial 7 4.6    

   Hispanic, Latino, or Spanish Origin      

Yes 4 2.6    

No  147 97.4    

    Education      

Less than high school or GED degree 1 0.7    

High school or GED degree 14 9.3    

Some college 41 27.2    
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2-Year degree 14 9.3    

College degree 58 38.4    

Advanced degree 23 15.2    

    Employment      

Employed full-time 72 47.7    

Employed part-time 26 17.2    

Full-time student 7 4.6    

Homemaker 1 0.7    

Disabled 7 4.6    

Retired 8 5.3    

Unemployed 18 11.9    

Temporarily laid off, sick leave, or 

maternity leave 

3 2.0    

Other, not otherwise specified 9 6.0    

   Personal Income   $34,298 $31,807 $0-200,000 

   Marital Status      

Never married 67 44.4    

Married 32 21.2    

Divorced 45 29.8    

Separated 5 3.3    
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Widowed 2 1.3    

   Alcohol Use Disorder Milestones      

Age of first drink   14.6 2.9 6-24 

Age of regular drinking   19.5 6.6 11-56 

Age at which drinking became 

problematic 

  27.8 9.6 15-60 

Age of first quit attempt   31.5 10.4 15-65 

   Number of Quit Attempts*   5.5 5.8 0-30 

   Lifetime History of Treatment (Can choose   

   more than 1) 

     

Long-term residential (6+ months) 8 5.3    

Short-term residential (<6 months) 49 32.5    

Outpatient 74 49.0    

Individual counseling 97 64.2    

Group counseling 62 41.1    

Alcoholics Anonymous/Narcotics 

Anonymous 

93 61.6    

Other 40 26.5    

   Received Medication for Alcohol Use Disorder      

Yes 59 39.1    

No 92 60.9    



MACHINE LEARNING FOR LAPSE PREDICTION 44 
 

    DSM-5 Alcohol Use Disorder Symptom Count   8.9 1.9 4-11 

   Current (Past 3 Month) Drug Use      

Tobacco products (cigarettes, chewing 

tobacco, cigars, etc.) 

84 55.6    

Cannabis (marijuana, pot, grass, hash, 

etc.) 

66 43.7    

Cocaine (coke, crack, etc.) 18 11.9    

Amphetamine type stimulants (speed, diet 

pills, ecstasy, etc.) 

15 9.9    

Inhalants (nitrous, glue, petrol, paint 

thinner, etc.) 

3 2.0    

Sedatives or sleeping pills (Valium, 

Serepax, Rohypnol, etc.) 

22 14.6    

Hallucinogens (LSD, acid, mushrooms, 

PCP, Special K, etc.) 

14 9.3    

Opioids (heroin, morphine, methadone, 

codeine, etc.) 

16 10.6    

   Reported 1 or More Lapse During Study Period      

Yes 84 55.6    

No 67 44.4    

   Number of Reported Lapses   6.8 12 0-75 

Note: N = 151 

* Two participants reported 100 or more quit attempts. We removed these outliers prior to 

calculating the mean (M), standard deviation (SD), and range. 
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Table 2 

Performance Metrics for Full models by Prediction Window 

 

Metric Week Day Hour 

auROC 0.891 0.899 0.929 

sensitivity 0.823 0.828 0.864 

specificity 0.819 0.845 0.881 

balanced accuracy 0.828 0.835 0.854 

positive predictive value 0.630 0.300 0.025 

negative predictive value 0.944 0.988 0.999 

Note: Areas under the receiver operating characteristic curves (auROCs) 

summarize the model’s sensitivity and specificity over all possible decision 

thresholds. Sensitivity, specificity, balanced accuracy, positive predictive value, 

and negative predictive value are performance metrics calculated at a single 

decision threshold for each model determined with Youdens index. All metrics 

represent median values across 30 held-out test sets. 
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Figure 1 

ROC curves and posterior probabilities for auROCs by prediction window. 

Note. The left panel depicts the aggregate receiver operating characteristic (ROC) curve for each 

model, derived by concatenating predicted lapse probabilities across all test sets. The dotted line 

represents the expected ROC curve for a random classifier. The histograms on the right depict 

the posterior probability distribution for the areas under the receiver operating characteristic 

curves (auROCs) for each model. The vertical lines represent the median posterior probability 

and the horizontal line represents the boundaries 95% CI. 
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Figure 2 

Precision-recall Curves by Prediction Window for the Full Models. 

 

Note. The plot depicts the aggregate precision-recall curves for each full model, derived by 

concatenating predicted lapse probabilities across all test sets. The dotted lines depict the 

sensitivities (0.718, 0.473, and 0.327 for week, day, and hour models, respectively) associated 

with decision thresholds that yield 0.700 positive predictive value for each of those models.
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Figure 3 

Feature importance (Shapley values) for Full Models by Prediction Window.  

 

Note. Panel A displays the global importance (mean |Shapley value|) for feature categories for 

each full model. Raw EMA features are grouped into categories by the original question from 

the EMA. Features based on the rates of previous lapses and previous missing surveys, as 

well as demographics, and the time of day and day of the week for the start of the prediction 

window are also included. Feature categories are ordered by their aggregate global 
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importance (i.e., total bar length) across the three models. The importance of each feature 

category for specific models is displayed separately by color. Panels B-D display local 

Shapley values that quantify the influence of feature categories on individual observations 

(i.e., a single prediction window for a specific participant) for each model. 


