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The goal of scientific psychology is to understand human 
behavior. Historically this has meant being able both to 
explain behavior—that is, to accurately describe its causal 
underpinnings—and to predict behavior—that is, to accu-
rately forecast behaviors that have not yet been observed. 
In practice, however, these two goals are rarely distin-
guished. The understanding seems to be that the two are 
so deeply intertwined that there would be little point in 
distinguishing them, except perhaps as a philosophical 
exercise. According to this understanding, explanation 
necessarily facilitates prediction; the model that best approx-
imates the mental processes that produce an observed 
behavior is also the one that best predicts future behav-
ior. Under this assumption, if we can catalog the various 
causes of a set of behaviors, including all the moderating 
and mediating variables that govern when and to what 
extent they each influence behavior, then we could, at 
least in principle, measure all of the relevant variables for 
a set of people and thereby predict their future behavior 
with very high accuracy.

Unfortunately, although explanation and prediction 
may be philosophically compatible, there are good rea-
sons to think that they are often in statistical and 

pragmatic tension with one another. From a statistical 
standpoint, it is simply not true that the model that most 
closely approximates the data-generating process will in 
general be the most successful at predicting real-world 
outcomes (Hagerty & Srinivasan, 1991; Shmueli, 2010; 
Wu, Harris, & Mcauley, 2007). Due to a phenomenon 
known as overfitting that we discuss in detail later, a 
biased, psychologically implausible model can often sys-
tematically outperform a mechanistically more accurate, 
but also more complex, model. More importantly, there is 
no guarantee that the phenomena routinely studied by 
psychologists will ultimately prove to be sufficiently sim-
ple as to be well approximated by models that are com-
prehensible to humans. It may well be that in many areas 
of psychology, scientists will ultimately have to choose 
between (a) developing complex models that can accu-
rately predict outcomes of interest but fail to respect 
known psychological or neurobiological constraints and 
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(b) building simple models that appear theoretically ele-
gant but have very limited capacity to predict actual human 
behavior. Practically speaking, even in cases where a rela-
tively simple explanatory model is waiting to be found, a 
researcher generally cannot know this ahead of time. She 
must therefore decide, on a case-by-case basis, whether to 
prioritize an explanation-focused strategy that seeks to 
identify abstract, generalizable principles or a prediction-
focused strategy that agnostically tries to mimic the out-
puts of the true data-generating process when given the 
same inputs, without caring how that goal is achieved.

We claim that this underappreciated tension between 
prediction and explanation has profound implications for 
how psychological science could be and should be con-
ducted. If ideal explanatory science is not generally ideal 
predictive science, and vice versa, then researchers must 
make a conscious choice: to explain or to predict. His-
torically, most of psychology has reflexively chosen an 
explanatory approach, without giving any serious con-
sideration to a predictive approach. Our central argument 
is that, in a great many cases, research programs that 
emphasize prediction, and that treat explanation as a sec-
ondary goal, would be more fruitful both in the short 
term and the long term. We believe that one of the big-
gest reasons that psychologists have historically opted for 
explanation is that, in the not-so-distant past, the tools of 
successful predictive science were poorly understood 
and rarely deployed in most fields of social and biomedi-
cal science. However, with the relatively recent revolu-
tion in machine learning theory and methodology—in 
which prediction of unobserved data is treated as the 
gold standard of success and explanation is typically of 
little or no interest—as well as the increasing availability 
of large-scale datasets recording human behavior, this is 
no longer true. Not only is it now eminently feasible to 
move psychology closer toward a predictive science, but 
it is already possible to point to a number of success sto-
ries from when behavioral scientists have chosen such a 
predictive approach.

The rest of this article is organized as follows. First, we 
review the typical explanatory approach as practiced by 
most of psychology, and we highlight some of the diffi-
culties of this approach of which psychologists are 
becoming increasingly aware. These include the prob-
lems of “p-hacking” (Simmons, Nelson, & Simonsohn, 
2011) and the seeming inability of researchers to consis-
tently replicate the results of prior experiments (Open 
Science Collaboration, 2015). Next, we introduce an 
alternative approach: research in which “success” is mea-
sured not by the size of a theoretically privileged regres-
sion coefficient or a model fit statistic but instead simply 
by the average difference between unobserved data (i.e., 
“out-of-sample” data that were not used to fit the model) 
and the model’s predictions for those data. We then 

describe some of the most important principles and tools 
of modern predictive science, as practiced by the field of 
machine learning, and describe how these principles and 
tools could be profitably imported to psychology. Specifi-
cally, we introduce the concepts of overfitting, cross-
validation, and regularization, and we discuss the issue of 
sample size when rejecting hypotheses is not a primary 
goal of the research. Finally, we argue that a short-term 
focus on prediction can ultimately improve our ability to 
explain the causes of behavior in the long term. Thus, an 
emphasis on prediction can be viewed not as an oppo-
nent of explanation but rather as a complementary goal 
that can ultimately increase theoretical understanding.

Current Practice in Psychology: 
Explanation Without Prediction

We assume the vast majority of our readers will already 
be convinced of the scientific value of explanatory mod-
eling, so we will say little to reinforce this notion. Explan-
atory science has allowed us to walk on the face of the 
moon, control or eradicate harmful diseases, and under-
stand much about the molecular origins of life. No one 
would seriously argue that explanation should not be a 
goal of science. What we do argue is that psychology’s 
emphasis on explaining the causes of behavior has led to 
a near-exclusive focus on developing mechanistic models 
of cognition that hold theoretical appeal but rarely dis-
play a meaningful capacity to predict future behavior.

There are two separate senses in which psychologists 
have been deficient when it comes to predicting behav-
ior. First, research papers in psychology rarely take steps 
to verify that the models they propose are capable of 
predicting the behavioral outcomes they are purportedly 
modeling. Instead, research is typically evaluated based 
either on “goodness of fit” between the statistical model 
and the sample data or on whether the sizes and direc-
tions of certain regression coefficients match what is 
implied by different theoretical perspectives. As we elab-
orate below, such demonstrations provide no guarantee 
of predictive accuracy for out-of-sample data; indeed, in 
some cases, the pursuit of a good model fit or theory-
congruent explanation can reduce the likelihood of gen-
erating good predictions.

Second, there is mounting evidence from the ongoing 
replication crisis that the published results of many 
papers in psychology do not, in fact, hold up when the 
same experiments and analyses are independently con-
ducted at a later date (Ebersole et al., 2015; Nosek & 
Lakens, 2014; Open Science Collaboration, 2015). Thus, 
models that are held up as good explanations of behav-
ior in an initial sample routinely fail to accurately predict 
the same behaviors in future samples—even when the 
experimental procedures are closely matched. There is 
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increasingly broad agreement that this widespread repli-
cation failure is largely due to “p-hacking” and other 
questionable research practices that have historically 
been prevalent in the field ( John, Loewenstein, & Prelec, 
2012; Simmons et al., 2011).

Goodness of fit versus test error

To fit is to overfit. One might suppose that demon-
strating the predictive validity of a model should be a 
relatively easy task. At face value, prediction seems to be 
baked into the very heart of what psychologists do. A 
large number of psychology articles prominently feature 
the word prediction in their titles—witness, for example, 
claims that “impulsivity predicts problem gambling in 
low SES [socioeconomic status] adolescent males” (Vitaro, 
Arseneault, & Tremblay, 1999), that “brain activity pre-
dicts how well visual experiences will be remembered” 
(Brewer, Zhao, Desmond, Glover, & Gabrieli, 1998), or 
that “early gesture selectivity predicts later language 
learning” (Rowe & Goldin-Meadow, 2009), among hun-
dreds of others. Such assertions reflect the intuitive idea 
that a vast range of statistical models are, in a sense, 
predictive models. For example, suppose we have an 
outcome variable y and two predictors X1 and X2, and we 
fit a regression model of the form:

 yi = β0 + β1X1i + β2 X2i + εi. (1)

Estimating the parameters of this model (or “training” 
the model, in the terminology of machine learning) yields 
the equation:

 ŷi = 1.6 + 0.35X1i + 0.62X2i. (2)

With this regression equation, one can readily gener-
ate new predictions simply by plugging in the corre-
sponding values of X1 and X2 for newly observed cases. 
When a researcher obtains a coefficient of determination 
of, say, b0, and thus reports that she is able to “predict” 
50% of the variance in educational attainment using a set 
of personality and demographic predictors, she is implic-
itly claiming that she would be able to make reasonably 
accurate predictions about the educational attainment of 
a random person drawn from the same underlying popu-
lation. And if that isn’t prediction, then what is?

The problem lies in the inference that the parameter 
estimates obtained in the sample at hand—i.e., the values 
b0 = 1.6, b1 = 0.35, and b2 = 0.62—will perform compara-
bly well when applied to other samples drawn from the 
same population. The R2 statistic used to assess the mod-
el’s goodness of fit answers a slightly different question—
namely, in repeated random samples similar to this one, 
if one fits a model with the form of equation 1 in each 

new sample—each time estimating new values of b0, b1, 
and b2—what will be the average proportional reduction 
in the sum of squared errors? In other words, R2 does not 
estimate the performance of a specific equation 2 but 
rather of the more general equation 1.1 It turns out that 
the performance of equation 1 is virtually always an 
overly optimistic estimate of the performance of equation 
2. The reason for this is that the values of b0, b1, and b2 
estimated in any given sample are specifically selected so 
as to minimize the sum of squared errors in that particu-
lar sample. Because the relationship between variables in 
any sample is always influenced in part by sampling or 
measurement error—which by definition is not shared 
with other data samples drawn from the same popula-
tion—a fitted model will almost invariably produce overly 
optimistic results.

Figure 1 illustrates this principle by contrasting two 
models fit to the same data: a linear regression and a 
10th-order polynomial regression. Note that even though 
the true effect in the population is linear (red line), the 
more complex polynomial model cannot help but cap-
ture illusory trends in the data—effectively hallucinating 
patterns that exist only in the training sample and not in 
the population at large.

The tendency for statistical models to mistakenly fit 
sample-specific noise as if it were signal is commonly 
referred to as overfitting. Minimizing overfitting when 
training statistical models can be seen as one of the primary 
objectives of the field of machine learning (Domingos, 
2012). To see why, recall that our standard goal in statisti-
cal modeling is to develop a model that can capably gen-
eralize to new observations similar, but not identical, to 
the ones we have sampled. We generally do not care very 
much about how well we can predict scores for the 
observations in our existing sample, since we already 
know what those scores are. In this sense, the prediction 
error that we compute when we fit a model on a particu-
lar dataset is only a proxy for the quantity we truly care 
about, which is the error term that we would obtain if we 
were to apply our trained model to an entirely new set of 
observations sampled from the same population. We call 
this latter error term the test error, to distinguish it from 
the training error that we obtain when the model is first 
fitted (in psychology, model fit indicators are almost 
always reported strictly for the training sample). The test 
error will almost always be larger than the training error. 
Consequently, unless one has taken steps to prevent 
overfitting, it is difficult to have confidence that one’s 
model can generalize to new observations—no matter 
how well the model appears to do when its performance 
is evaluated on the same dataset used in training.

When are the problems of overfitting most and least 
pronounced? When predictors have strong effects and 
researchers fit relatively compact models in large 
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samples, overfitting is negligible. For example, with a 
sample size of 200 and 5 uncorrelated predictors, each 
correlated 0.4 with the dependent variable (DV), the 
average in-sample R2 is 0.32—a negligible increase both 
from its “true” or asymptotic value of 0.31 (i.e., equation 
1) as well as from the average test or out-of-sample value 
of 0.30 (i.e., equation 2). But as the number of predictors 
increases and/or sample size and effect size drop, overfit-
ting begins to increase—in some cases precipitously. For 
a particularly dramatic case, in a sample of N = 50 with 
20 uncorrelated predictors, each correlated 0.1 with the 
DV, the observed (and overfitted) R2 value will, on aver-
age, be 0.45, which certainly gives the impression that 
one could predict values of the DV rather successfully. 
However, the true value of R2 in this situation is only 
0.07. Even worse, the average out-of-sample test value of 
R2 is only 0.02. Although the average value of the adjusted 
R2 statistic (see Note 1) will approximate the true value of 
0.07, it still overstates the ability of the fitted model to 
predict future, out-of-sample DV values by more than a 
factor of 3. Clearly, then, one cannot trust estimates of 
model performance very far if those estimates are 
obtained by “testing” the model on the same data on 
which it was originally trained. Much better estimates of 
the out-of-sample predictive performance of a model are 
obtained using cross-validation, a technique that we dis-
cuss in detail at a later point.

p-hacking as procedural overfitting. The example 
quantitative results we just reviewed might not seem 
unduly alarming to many psychologists. In many fields, 

researchers rarely fit models containing more than three 
or four predictors, and severe problems arise primarily 
when the number of predictors is large relative to the 
number of subjects. However, it is important to remem-
ber that our examples, which are based on comparing 
the average in-sample R2 to the out-of-sample test R2, 
only quantify overfitting that arises at the model estima-
tion stage. That is, it assumes that researchers have been 
completely principled in setting up their analysis pipeline 
(the processing steps leading from the raw data to the 
final statistical results) and have not engaged in any flex-
ible analysis practices. In reality, however, many overfit-
ted findings predominantly reflect analytical procedures 
that are independent of, and often logically prior to, 
model estimation. In particular, there’s a well-recognized 
tendency for researchers, readers, reviewers, editors, and 
journalists alike to favor analysis procedures that produce 
“good” results—where a good result is one that is deemed 
more hypothesis-congruent, publication-worthy, soci-
etally interesting, etc. (Bakker, van Dijk, & Wicherts, 
2012; Dwan et al., 2008; Ferguson & Heene, 2012; 
Ioannidis, 2012). In recent years, the practice of flexibly 
selecting analytical procedures based in part on the qual-
ity of the results they produce has come to be known as 
p-hacking (Simmons et al., 2011)—or, perhaps less ten-
dentiously, data-contingent analysis (Gelman & Loken, 
2013).

The impact of p-hacking on the production of overfit-
ted or spurious results is difficult to overstate. In an influ-
ential recent study, Simmons and colleagues demonstrated 
that even a moderate amount of flexibility in analysis 

Fig. 1. Training and test error produced by fitting either a linear regression (left) or a 10th-order polynomial regression (right) when the true rela-
tionship in the population (red line) is linear. In both cases, the test data (green) deviate more from the model’s predictions (blue line) than the 
training data (blue). However, the flexibility of the 10th-order polynomial model facilitates much greater overfitting, resulting in lower training error 
but much higher test error than the linear model. MSE = mean squared error. 
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choice—for example, selecting from among two DVs or 
optionally including covariates in a regression analysis—
could easily produce false-positive rates in excess of 60%, 
a figure they convincingly argue is probably a conserva-
tive estimate (Simmons et al., 2011). Similar demonstra-
tions abound. For example, Strube (2006) demonstrated 
that the widespread practice of optional stopping—that 
is, periodically computing a p value during data collec-
tion and halting the process if the p value is below the 
conventional .05 level—is by itself often sufficient to 
inflate the false-positive rate several-fold. Unfortunately, 
large surveys of academic psychologists demonstrate that 
such questionable research practices appear to be the 
norm rather than the exception. John and colleagues 
(2012) reported that 56% of psychologists admitted to 
using optional stopping, 46% to selectively reporting 
studies that “worked,” and 38% to deciding whether to 
exclude data only after examining results (and given the 
stigma associated with these practices, these self-reported 
numbers likely understate the true prevalence).

In our view, p-hacking can be usefully conceptualized 
as a special case of overfitting. Specifically, it can be 
thought of as a form of procedural overfitting that takes 
place prior to (or in parallel with) model estimation—for 
example, during data cleaning, model selection, or choos-
ing which analyses to report. Much as a statistical model 
is liable to take advantage of idiosyncratic patterns in the 
training data that are not truly present in the population, 
human researchers will often see—and act on—idiosyn-
cratic differences in the results obtained when using dif-
ferent analytical procedures. Whether a machine or a 
human is drawing the inference, the fundamental prob-
lem remains the same: Every pattern that could be 
observed in a given dataset reflects some (generally 
unknown) combination of signal and error. The more 
flexible a statistical model or human investigator is will-
ing to be—that is, the wider the range of patterns they 
are willing to “see” in the data—the greater the risk of 
hallucinating a pattern that is not there at all. Like the 
10th-order polynomial in Figure 1B, a procedurally over-
fitted or p-hacked analysis will often tell an interesting 
story that appears to fit the data exceptionally well in an 
initial sample but cannot be corroborated in future sam-
ples. And just as with the model in Figure 1B, the culprit 
is unrestrained flexibility—in this case, in the data analy-
sis and interpretation of results rather than in the numeri-
cal estimation process.

Unfortunately, procedural overfitting can be much 
more difficult to quantify and control than estimation-
related overfitting, because in principle, accounting for 
the former requires one to document (and report) every 
analysis step one has taken—something that very few 
researchers routinely do. Consequently, the extra 
“researcher degrees of freedom” induced by analytical 
flexibility are often invisible not only to readers of a 

scientific publication but to the authors themselves. 
Indeed, as Gelman and Loken (2013) explore in detail in 
their discussion of the “garden of forking paths,” many 
researchers appear to pride themselves on their analytical 
flexibility, viewing it as an important part of the creative 
scientific process and arguing that scientific progress 
demands that one be able to “follow the data” wherever 
they lead. Although there is undoubtedly some truth to 
this view, it should also be clear by now that unreflec-
tively chasing tantalizing patterns in data can easily lead 
one to “clarify” a finding that was never really there in the 
first place. Balancing these two competing motivations—
that is, facilitating exploration of novel ideas and prelimi-
nary results while simultaneously avoiding being led 
down garden paths—is one of the central challenges of 
statistical inference in science. In the next sections, we 
discuss several means of achieving this goal.

Balancing Flexibility and Robustness: 
Basic Principles of Machine Learning

Psychology has only recently begun to appreciate the 
need to place hard constraints on the flexibility afforded 
to data analysts and researchers. This appreciation is 
most evident in the numerous recent calls for routine 
preregistration of studies (Chambers & Munafo, 2013; 
Nosek & Lakens, 2014), where a sharp distinction is  
to be drawn between the exploratory (where flexibility 
is encouraged) and confirmatory (where flexibility is 
denied) components of a research program ( Jonas & 
Cesario, 2015; Wagenmakers, Wetzels, Borsboom, van 
der Maas, & Kievit, 2012). Although the explicit manage-
ment of flexibility is generally new territory for psy-
chologists, it is one of the fundamental concepts of 
machine learning and other predictive sciences. Schol-
ars in these fields have developed an elegant framework 
for thinking about these issues, as well as simple, gen-
eral methods for estimating and mitigating the effects of 
analytical flexibility. In this section, we give a brief over-
view of some of the basic principles of machine learn-
ing. In the following sections, we consider some of the 
most important analytical techniques that appear in any 
machine learner’s toolkit.

Decomposing error into bias and 
variance

In the explanatory approach to science, the ultimate goal 
is to develop a mechanistic model of the data-generating 
process that gives rise to the observed data. Equally 
important, one strives to estimate the parameters of this 
process such that the parameter estimates are, on average, 
equal to the true parameter values. Estimates or predic-
tions without this property are biased, and for the explan-
atory researcher, biased estimates are to be avoided at 
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almost any cost. Indeed, to researchers trained in the 
psychometric tradition, the very term bias is practically 
synonymous with error, tending to connote general 
wrongness. But in the statistical learning literature, bias is 
defined in a narrower and much less offensive way. Spe-
cifically, it refers to one particular kind of error: the ten-
dency for a model to consistently produce answers that 
are wrong in a particular direction (e.g., estimates that are 
consistently too high). Bias can be contrasted with vari-
ance, which refers to the extent to which a model’s fitted 
parameters will tend to deviate from their central tendency 
across different datasets.

To illustrate this distinction, consider the result of 
repeatedly trying to hit the bull’s eye during a game of 
darts (Fig. 2). We can distinguish two ways of systemati-
cally failing at this noble endeavor. First, a player might 
show a consistent tendency to hit some part of the board 
other than the bull’s eye (e.g., perhaps he or she tends to 
hit the left side of the board rather than the center), in 

which case we would say that the player’s throws display 
a systematic bias (right panels). Second, a player might 
display a high degree of variance around his or her cen-
tral tendency, such that on any given throw, the dart is 
likely to land relatively far from the target—whether or 
not the center of mass of the player’s throws happens to 
be centered exactly on the bull’s eye (bottom panels).

Suppose we decide to score our dart game using a 
standard least-squares criterion—that is, we declare the 
winner of the game to be the player who minimizes the 
sum of squared distances to the bull’s eye across all of his 
or her throws. It may be intuitively clear from Figure 2 
that this term is determined by both the bias and variance 
terms we have just introduced. That is, the overall quality 
of a player’s throws reflects the degree to which (a) the 
player’s central tendency deviates from the true target 
and (b) the player’s individual throws deviate from the 
player’s own central tendency. Thus, instead of viewing 
the overall error as a monolithic quantity, we are 

Fig. 2. An estimator’s predictions can deviate from the desired outcome (or true scores) in two ways. 
First, the predictions may display a systematic tendency (or bias) to deviate from the central tendency of 
the true scores (compare right panels with left panels). Second, the predictions may show a high degree 
of variance, or imprecision (compare bottom panels with top panels). 
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effectively decomposing it into two distinct sources: bias 
and variance. This decomposition—known, shockingly, 
as the bias-variance decomposition—is illustrated more 
explicitly in Figure 3.

The bias-variance tradeoff

Why quantify bias and variance explicitly, rather than 
treating prediction error as a single sum? One important 
reason is that a researcher typically has some control 
over the bias of a model and hence can indirectly influ-
ence the total error as well. To see this intuitively, sup-
pose we are tasked with developing a statistical model 
that can predict a person’s Extraversion score based on 
demographic variables (age, gender, SES, etc.). Further, 
suppose that instead of taking the exercise seriously, we 
opt to make the same prediction for every human being 
on the planet—asserting, by fiat, that every human on the 
planet has exactly 15 Extravertons (the unit of measure-
ment is irrelevant for our purposes). The bias of this esti-
mator is likely to be high, as it is exceedingly unlikely 
that the true mean Extraversion level across all potential 
samples is 15. However, the estimator has no variance at 
all, as we always make exactly the same prediction, no 
matter what our data look like. Thus, in this example, 
100% of the model’s expected total error can be attrib-
uted to bias.

Silly as this example may be, it serves to illustrate the 
fundamental tradeoff between bias and variance (appro-
priately named the bias-variance tradeoff). Other things 
being equal, when we increase the bias of an estimator, 

we decrease its variance, because by biasing our estima-
tor to preferentially search one part of the parameter 
space, we simultaneously inhibit its ability to explore 
other, nonpreferred points in the space. Whether this 
trade is helpful or harmful will depend entirely on the 
context. In the above example, adopting an estimator so 
biased that it entirely ignores the observed data is clearly 
a recipe for disaster. In general, however, judicious use of 
a biased estimator will often reduce total prediction error. 
For example, some readers may be surprised to learn that 
multilevel modeling approaches to analyzing clustered 
data—which have recently seen a dramatic increase in 
adoption in psychology—improve on ordinary least 
squares (OLS) approaches to estimating individual cluster 
effects by deliberately biasing (through “shrinking” or 
“pooling”) the cluster estimates toward the estimated 
population average (Gelman & Hill, 2006; Pinheiro & 
Bates, 2000). Similarly, the long-standing observation that 
“improper” linear models such as unit-weighting schemes 
or even random coefficients will often outperform stan-
dard linear regression (Davis-Stober & Dana, 2013; 
Dawes, 1979; Wainer, 1976) can be readily understood in 
terms of the bias-variance tradeoff: Improper models are 
much less flexible than their traditional counterparts, so 
they often dramatically reduce the variance associated 
with overfitting (at the cost of an increase in bias).

The bias-variance tradeoff offers an intuitive way of 
understanding what is at stake in the ongoing debate 
over p-hacking (or, as we have called it, procedural over-
fitting). The tension between the needs to (a) follow the 
data where they lead and (b) avoid drawing erroneous 

Fig. 3. Schematic illustration of the bias-variance decomposition. (Left) Under the classical error model, 
prediction error is defined as the sum of squared differences between true scores and observed scores 
(black lines). (Right) The bias-variance decomposition partitions the total sum of squared errors into two 
separate components: a bias term that captures a model’s systematic tendency to deviate from the true 
scores in a predictable way (black line) and a variance term that represents the deviations of the indi-
vidual observations from the model’s expected prediction (gray lines). 
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inferences by capitalizing on researcher degrees of free-
dom can be understood as a matter of researchers resid-
ing at different positions along the bias-variance tradeoff. 
That is, one can construe a research strategy that favors 
liberal, flexible data analysis as a relatively low-bias but 
high-variance approach (i.e., almost any pattern in data 
can potentially be detected, at the cost of a high rate of 
spurious identifications) and an approach that favors 
strict adherence to a fixed set of procedures as a high-
bias, low-variance approach (only a limited range of pat-
terns can be identified, but the risk of pattern hallucination 
is low).

A principled approach to the tradeoff: 
Minimize prediction error

It would be nice if there were a single global solution to 
the bias-variance tradeoff and researchers could all agree 
to use the same set of optimal analytical approaches. 
Unfortunately, there is no free lunch (Wolpert & Macready, 
1997): The bias-variance tradeoff is fundamental and 
unavoidable, and we all must decide how much bias we 
wish to trade for variance, or vice versa. The explanatory 
approach to the tradeoff prioritizes minimizing bias. How-
ever, because the total prediction error is equal to the sum 
of bias and variance, this approach runs the risk of pro-
ducing models that are essentially useless for prediction, 
due to the variance being far too large. Importantly, it is 
not just prediction for prediction’s sake that suffers. The 
utility of the theories under investigation also greatly 
diminishes, because operating under a high-variance 
regime implies that the models one derives from one’s 
data are highly unstable and can change dramatically 
given relatively small changes in the data. We argue that 
this is precisely the situation in which much of psychology 
is currently: Elaborate theories seemingly supported by 
statistical analysis in one dataset routinely fail to generalize 
to slightly different situations or even to new samples 
putatively drawn from the same underlying population.

In machine learning, by contrast, the primary goal is 
usually to predict future observations as accurately as 
possible—in other words, to minimize prediction error. 
Thus, the machine learning approach to the bias-variance 
tradeoff is clear: One should prefer whatever the ratio of 
bias to variance is that minimizes the expected prediction 
error for the problem at hand. In some cases, this may 
happen to coincide with the explanatory approach—that 
is, it may happen that the expected prediction error is 
minimized when bias is minimized. More commonly, 
however, prediction error will be minimized by a model 
that yields estimates or predictions that are, to some 
degree, biased.

Finding a model that minimizes the expected predic-
tion error typically requires at least three things. First, one 

must use datasets large enough to support training of 
statistical models that can make good predictions. Sec-
ond, one must be able to accurately estimate prediction 
error, so as to objectively assess a model’s performance 
and determine when and how the model can be improved. 
Third, one must be able to exert control over the bias-
variance tradeoff when appropriate, by using biased 
models that can push predictions toward areas of the 
parameter space that are more likely to contain the true 
parameter values. Although a full treatment of these 
issues is beyond the scope of this paper (for excellent 
full-length introductions, see Browne, 2000; Bunea et al., 
2011; Domingos, 2012; McNeish, 2015; an authoritative, 
freely available textbook is Hastie, Tibshirani, & Friedman, 
2009), even a cursory familiarity with core machine learn-
ing concepts can, in our view, help psychological scien-
tists substantially improve the predictive accuracy of their 
models. In the next sections, we discuss three common 
methodological practices that respectively help address 
the three requirements mentioned above: first, the routine 
use of very large datasets as a means of improving pre-
dictive accuracy; second, the reliance on cross-validation 
to assess model performance; and third, the use of regu-
larization as a way of biasing one’s predictions in desir-
able ways.

The “Big” in Big Data

Overfitting and sample size

The term “Big Data” has attracted a good deal of atten-
tion from behavioral scientists and neuroscientists in 
recent years (Bentley, O’Brien, & Brock, 2014; Horn & 
Toga, 2013). Precisely what Big Data means in the con-
text of psychological science remains a matter of debate 
(Yarkoni, 2014). In the tech industry, the term is usually 
applied to datasets that are terabytes or even petabytes in 
size—several orders of magnitude larger than the datas-
ets with which all but a few lucky (or perhaps, unlucky) 
psychologists work. A cynic would thus not be entirely 
remiss in suggesting that Big Data is, thus far, more of a 
buzzword than a legitimate paradigm shift in the analysis 
of psychological data.

Nonetheless, what should not be controversial is that 
the “Big” in Big Data is a good thing. Statisticians and 
methodologically inclined psychologists have been call-
ing for the routine use of much larger samples for decades 
(Cohen, 1962, 1992), but until recently, there was little 
evidence to suggest that these calls were being heeded 
(Sedlmeier & Gigerenzer, 1989). Thanks to modern tech-
nology, the tide now appears to be turning. The advent 
of online/mobile data collection, coupled with access to 
enormous archival datasets from social networks and 
other websites, means that studies based on sample sizes 
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of tens of thousands of participants—and in some cases, 
millions (Bond et al., 2012; Xu, Nosek, & Greenwald, 
2014)—are no longer unusual.

One of the chief benefits of large datasets is that they 
provide a natural guard against overfitting. The larger a 
sample, the more representative it is of the population 
from which it is drawn; consequently, as sample size 
grows, it becomes increasingly difficult for a statistical 
model to capitalize on patterns that occur in the training 
data but not in the broader population. Given enough 
data, even an intrinsically flexible model can avoid over-
fitting data when the true data-generating process is sim-
ple. Figure 4 illustrates the results of fitting either a linear 
regression (left panels) or a 10th-order polynomial 
regression (right panels) when the true relationship in 
the population is quadratic. When sample size is very 
small (top), the polynomial model cannot help but 
grossly overfit the training data, resulting in massive pre-
diction error when the fitted model is applied to new 
data (note the enormous test error in Fig. 4B). However, 
as the sample size grows large (bottom), catastrophic 
overfitting becomes less likely even if we happen to pick 
an overly flexible model. In the example displayed in 
Figure 4D, the 10th-order polynomial manages to pro-
duce a smaller error in new test data than the linear 
model—something that would be exceedingly unlikely to 
happen with less data.

This protective effect of large samples has helped give 
rise to the popular saying in machine learning that more 
data beats better algorithms2 (e.g., Domingos, 2012). Very 
often, the single best thing a researcher can do to improve 
a model’s generalization performance—if not always the 
easiest or cheapest—is to collect more data.

Why haven’t we learned more from Big 
Data studies?

One might suppose that having access to enormous data-
sets would make it much easier to build highly predictive 
models, thereby enabling researchers to solve with ease 
problems that used to be nigh impossible in the days 
before smartphone sensors, Amazon Mechanical Turk, 
and Twitter (Miller, 2012; Yarkoni, 2012). Although this 
may be true in a statistical sense—that is, one can obvi-
ously fit massively more complex models to a dataset 
with 1 billion cases than to a dataset with 50 cases—it is 
also fair to say that the real-world impacts of the Big Data 
revolution on psychological science thus far appear to be 
relatively modest. A glance at the published record may 
well give one the impression that, far from facilitating 
ever more powerful and insightful analyses of psycho-
logical phenomena, the opposite seems to be happening. 
That is, as sample sizes have grown, effect sizes have 

consistently shrunk (Ioannidis, 2008; Yarkoni, 2009)—
often to the point where the explanatory utility of a mas-
sively complex model fitted to enormous amounts of 
data remains somewhat unclear.

Two examples illustrate this: First, consider a recent 
large-sample neuroimaging study (n = 692) by a multina-
tional European consortium that reported the ability to 
predict whether adolescents would qualify as binge drink-
ers at age 16 based on behavioral, genetic, and neuroim-
aging data obtained 2 years prior (Whelan et al., 2014). 
This impressive-sounding feat is rendered somewhat less 
impressive by the knowledge that the maximum reported 
classification accuracy was 70%—well above chance 
(55%) but probably of little clinical utility given the high 
cost of data acquisition. Moreover, the zero-order correla-
tion between binge drinking at age 16 and smoking at age 
14 (which the authors quite reasonably excluded from 
their predictive model on the grounds that it was too 
powerful) was 0.75. In other words, a clinician who 
wished to predict future drinking would have done almost 
as well as the authors’ predictive model simply by asking 
subjects if they smoke. Our point here is not to criticize 
what we view as an exceptionally careful and well-exe-
cuted study but rather to observe that, when researchers 
take pains not to overfit their data, the results are almost 
invariably much more modest than what one might glean 
from breathless headlines of “brain predictions” derived 
from small samples without cross-validation.

Second, consider the world of quantitative genetics, 
where a naïve consumer examining the field’s collective 
output might conclude that all of the good researchers 
must have left the field to pursue other interests. In the 
mid-1990s, several hypothesis-driven studies reported the 
discovery of gene variants that individually explained 3% 
to 7% of the variance in important clinical or behavioral 
phenotypes—for example, the famous link between the 
serotonin transporter gene and a host of anxiety- and 
depression-related traits (Lesch et al., 1996) or the asso-
ciation between the dopamine 4 receptor gene (DRD4) 
and novelty-seeking (Ebstein et al., 1996). Yet within a 
few years, such exciting findings had almost entirely dis-
appeared from the literature—to be replaced by much 
larger studies (with ns routinely > 10,000) that have con-
sistently produced null results or extremely small effects 
(e.g., Ripke et al., 2013; Smith et al., 2015; A. R. Wood 
et al., 2014). Munafò and Flint (2011) summarized this 
literature by asserting that the preceding 15 years of 
research had “delivered little in the way of clear evidence 
for the contribution of specific genetic variants to 
observed variation in personality traits” (p. 395).

How can we explain the large discrepancies between 
the findings of many older, small-sample, theory-driven 
studies and those of much larger, more recent Big Data 
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studies? Presumably the underlying psychological reality 
itself has not changed over time, so there are only two 
possibilities. One possibility is that small-sample studies 
are—counterintuitively and in defiance of their much 
lower cost and much more rapid execution—actually the 
methodologically more rigorous investigations. In fact, 
contemporary large-scale studies must be so much slop-
pier than their traditional counterparts that effects once 
consistently detected with convenience samples of just a 
few dozen subjects are no longer detectable at all in data-
sets several orders of magnitude larger.

We think it is safe to say that this is not a plausible 
explanation.

The other possibility is that the results generated by 
small-sample studies tend to be massively overfitted. It is 
surprisingly easy to fool oneself into believing and/or 
reporting results that are simply not true, and as dis-
cussed above, it is easier to fool oneself when samples 
are small than when they are large (cf. Fig. 4). From this 
perspective, there is nothing at all mysterious about the 
gradual decay of initially exciting effects (which some 
have dramatically dubbed the “Decline Effect”; Lehrer, 
2010). It simply reflects the fact that small samples neces-
sarily produce more variable estimates than large sam-
ples (Gelman & Weakliem, 2009; Ioannidis, 2008; Yarkoni, 
2009) and that, given the strong prevailing bias in favor 

Fig. 4. Large samples guard against overfitting. See text for explanation. 
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of positive, large, or otherwise “interesting” effects 
(Nosek, Spies, & Motyl, 2012), it is the larger effects that 
tend to get published. In other words, the reason effect 
sizes in many domains have shrunk is that they were 
never truly big to begin with, and it is only now that 
researchers are routinely collecting enormous datasets 
that we are finally in a position to appreciate that fact.3

The obvious implication is that, if we’re serious about 
producing replicable, reliable science, we should gener-
ally favor small effects from large samples over large 
effects from small samples. (Of course, large effects from 
large samples are even better, on the rare occasions that 
we can obtain them.) In fact, in many cases, there is a 
serious debate to be had about whether it is scientifically 
useful to conduct small-sample research at all. In many 
domains, where data collection is costly and most 
research is conducted by small, independent labs, it is 
difficult to obtain anything but relatively small samples. 
Although there is a widespread belief that “anything is 
better than nothing” and that “we have to start some-
where,” given the various problems we’ve reviewed—
many of which would simply not have arisen in larger 
samples—we think this view warrants considerable 
skepticism.

One alternative to conducting small-sample research 
would be for researchers to participate in large, multilab, 
collaborative projects (Ebersole et al., 2015; Klein et al., 
2014). Another would be to conduct novel analyses on 
some of the existing large datasets that are available to 
researchers, such as the Human Connectome Project 
(Van Essen et al., 2013) or 1000 Functional Connectomes 
(Biswal et al., 2010) datasets in functional magnetic reso-
nance imaging (fMRI), lexical corpora such as the English 
Lexicon Project (Balota et al., 2007) or Lexique (New, 
Pallier, Brysbaert, & Ferrand, 2004) in psycholinguistics, 
or the American National Election Studies (ANES) data-
base in political psychology (electionstudies.org), to 
name just a few. Such resources remain greatly underuti-
lized in psychology, often under the assumption that the 
benefits of having complete experimental control over 
one’s study outweigh the enormous increase in estima-
tion variance and associated risk of overfitting. But as we 
have shown above, the recent proliferation of modest 
effect sizes from large, expensive studies is not a sign that 
we have entered an era of incremental, uncreative psy-
chological science; rather, it’s the mark of a field under-
going a painful but important transition toward 
widespread adoption of truth-supporting procedures. 
From this perspective, the rapid introduction of Big Data 
approaches to many areas of psychology stands to pro-
vide a much-needed corrective to decades of overfitted, 
high-profile results that have systematically distorted 
many researchers’ intuitions and expectations.

Cross-Validation

From independent replication to 
K-folds
To ensure good predictive performance, one must have a 
way of objectively evaluating the performance of any 
models trained on one’s data—that is, of quantifying the 
out-of-sample prediction error. In machine learning,  
the most common—indeed, nearly universal—approach 
to estimating prediction error is cross-validation. Cross-
validation refers to a family of techniques that involve 
training and testing a model on different samples of data 
(Browne, 2000; Shao, 1993). Although the explicit use of 
cross-validation to quantify generalization performance is 
largely absent from contemporary psychological science, 
the practice has deep roots in the field. As early as the 
late 1940s, psychologists in a variety of disciplines were 
strongly advocating the use of cross-validation or compa-
rable analytical corrections as a means of combatting 
shrinkage in multiple regression (Kurtz, 1948; Mosier, 
1951; Schmitt, Coyle, & Rauschenberger, 1977; Wherry, 
1951, 1975). Mosier (1951) went so far as to observe that 
“if the combining weights of a set of predictors have 
been determined from the statistics of one sample, the 
effectiveness of the predictor-composite must be deter-
mined on a separate, independent sample. This is the 
case whether the combining weights are multiple-regres-
sion beta weights or item-analysis weights of one or zero” 
(p. 5; original italics).

The canonical example of cross-validation is, of 
course, the classical replication setup, where a model is 
trained on one dataset and then tested on a completely 
independent dataset. Indeed, independent replication 
has historically been psychologists’ favored method for 
establishing the validity or generality of a finding—albeit 
from a hypothesis-testing perspective rather than a pre-
dictive-modeling perspective (i.e., the typical approach is 
to test whether the same qualitative pattern of results 
holds in two separate samples rather than to train a 
model in one sample and then test its quantitative predic-
tions in a second sample). Unfortunately, independent 
replication is not always a scalable strategy for ensuring 
the reliability of a literature: At best, it requires the acqui-
sition of large amounts of new data, which may be 
impractical and expensive; at worst, years or even 
decades may elapse before a finding is convincingly 
refuted or discredited, allowing considerable waste of 
scientific resources in the interim (Greenwald, 2012; 
Ioannidis, 2012).

Rather than resorting to the acquisition of new data, 
modern applications of cross-validation typically adopt 
alternative approaches that provide most of the benefit of 
true replication at no extra cost. The basic premise can 
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be captured in two simple insights. The first insight is that 
one can turn a single dataset into two nominally inde-
pendent datasets rather easily: One simply has to ran-
domly split the original dataset into two sets—a training 
dataset and a test dataset. The training half is used to fit 
the model, and the test half is subsequently used to 
quantify the test error of the trained model. The estimate 
from the test dataset will then more closely approximate 
the true out-of-sample performance of the model.4 Of 
course, this isn’t an ideal solution, because instead of 
doubling data collection costs, we’ve simply halved 
(roughly) our statistical efficiency. The reduction in over-
fitting—obtained by ensuring that no single data point is 
used in both the training and evaluation of a model—
now comes at the cost of a propensity to underfit, 
because the training sample is smaller, and hence the 
fitted model is not as stable as it would be with a larger 
sample (cf. Fig. 4).

Fortunately, this problem can be mostly ameliorated 
via a second insight—namely, that it is possible to effec-
tively “recycle” one’s dataset. That is, instead of assigning 
each observation exclusively to either the training or the 
test datasets, one can do both, by repeating the cross-
validation twice. In one “fold” of the analysis, one half of 
the data is used for training and the other half for testing; 
in a second fold, the datasets are reversed, and the train-
ing set and test sets exchange roles. The overall model 
performance is then computed by averaging the test per-
formance scores of the two folds, resulting in a single 
estimate that uses all of the data for both training and 
testing yet never uses any single data point for both. 
More generally, this approach is termed K-fold cross-
validation, where K, the number of “folds,” can be any 
number between 2 and the number of observations in 
the full dataset (but is most commonly set to a value in 
the range of 3 to 10). When K is equal to the sample size 
n—so that the model is fit n times, each time predicting 
the score for only a single held-out subject—the proce-
dure is commonly referred to as leave-one-out cross-
validation (LOOCV).

Cross-validated model estimation

K-fold cross-validation is a simple but extremely powerful 
technique. It provides a minimally biased way of estimat-
ing the true generalization performance of any model. In 
general, the overfitting observed when using the same 
data to both train and test a model will largely disappear 
when cross-validation is applied, and the cross-validated 
estimate of a model’s generalization performance will (on 
average) typically be very close to the true out-of-sample 
performance. Importantly, cross-validation can be applied 
to virtually any statistical estimation procedure, whereas 
analytical estimates (e.g., the Aikake Information Criterion, 

or AIC; Vrieze, 2012) are only available for a restricted set 
of models under fairly idealized assumptions. Thus, cross-
validation is particularly useful in cases when the com-
plexity of a model is high relative to the amount of 
available data—as is common, for example, in many struc-
tural equation modeling (SEM) applications. In such cases, 
it can come as a shock to discover that a model that 
appears to fit one’s data very well according to various 
goodness-of-fit indices can fare very poorly when tested 
out-of-sample (Browne, MacCallum, Kim, Andersen, & 
Glaser, 2002). Surprisingly (or, if one is cynically inclined, 
perhaps not surprisingly), explicit cross-validation of com-
plex structural models remains almost entirely absent from 
the social science literature (Holbert & Stephenson, 2002).

Cross-validated model selection

Importantly, cross-validation approaches can help guard 
not only against overfitting that arises during model esti-
mation but also against procedural overfitting or p-hacking. 
Recall that p-hacking occurs whenever a researcher 
decides to use one procedure rather than another based, 
at least in part, on knowledge of the respective outcomes. 
For example, a researcher might inspect her data, observe 
that scores are highly positive skewed, and then alter-
nately try out log-transformation and winsorization of the 
data—ultimately retaining the former approach when it 
produces “better” results. The tension lies in the fact that, 
although the decision to choose from among multiple 
possible procedures based on their respective outcomes 
entails a certain amount of overfitting, it nevertheless 
seems reasonable to allow researchers to “follow the data” 
where they lead rather than blindly applying a predeter-
mined set of procedures.

Judicious use of cross-validation during model selec-
tion can, in principle, provide a compromise between 
these two positions. The simplest approach is to obtain a 
cross-validated estimate of model performance under 
each possible analysis approach (e.g., for log-transforma-
tion versus winsorization of the data) and then select the 
approach that produces the best cross-validated results. 
This approach will reduce, though not outright eliminate 
(for reasons discussed below), overfitting. More sophisti-
cated approaches involving nested cross-validation or 
alternative decision rules for selecting among cross-
validated models are also available (for discussion, see 
Varma & Simon, 2006, as well as the online Python and R 
tutorials we have made available at http://github.com/
tyarkoni/PPS2016).

Lastly, in cases where researchers are fortunate enough 
to have very large datasets with which to work, the stron-
gest approach (though one that requires considerable 
self-discipline) is to set aside a subset of the full dataset 
as a true test sample. This hold-out dataset must not be 

http://github.com/tyarkoni/PPS2016
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inspected until all analysis is complete and the researcher 
is ready to report the final results. Provided this stringent 
criterion is adhered to, researchers are free to exercise as 
much flexibility as they like, because any overfitting 
incurred during analysis will have to be paid back in full 
(in the form of disappointing results) when the final 
model is applied to the independent test data.

Limitations

Naturally, cross-validation is not a panacea and has a 
number of limitations worth keeping in mind. First, when 
working with complex models or large datasets, K-folds 
cross-validation can be computationally expensive, as 
each model must be fit K times instead of just once 
(although for simple estimators such as linear regression 
coefficients, analytic computation of cross-validated 
model performance is possible). Second, for reasons 
related to the bias-variance tradeoff discussed earlier, 
cross-validation is not completely unbiased and will 
sometimes underestimate the true out-of-sample perfor-
mance. Third, under most implementations, cross-valida-
tion produces nondeterministic results. This is arguably 
not a real weakness at all, inasmuch as estimation uncer-
tainty is a fact of life; however, researchers used to think-
ing of p < .05 as a binary decision criterion for the 
“realness” of an effect may initially struggle to acclimate 
to a world where p = .04 in one iteration can turn into  
p = .07 in another.

Lastly, and most importantly, the ability to easily cross-
validate virtually any data analysis procedure is not a 
license to experiment with any and all analyses that cross 
one’s mind. It is important to recognize that standard 
concerns about p-hacking or data-contingent analysis still 
apply (albeit to a lesser extent). Cross-validation will only 
control overfitting appropriately so long as any researcher 
degrees of freedom are included within the cross-valida-
tion loop (Varma & Simon, 2006). In other words, 
researchers should ideally embed any model selection 
steps into the cross-validation procedure itself, rather 
than simply picking the model that gives the best cross-
validated result (for further explanation, see Cawley & 
Talbot, 2010; Krstajic, Buturovic, Leahy, & Thomas, 2014; 
Varma & Simon, 2006). Care should also be taken to 
avoid “leakage” of information between training and test 
datasets, which can manifest in subtle but pernicious 
ways. For example, even a seemingly innocuous step like 
standardizing the columns of an entire dataset prior to 
cross-validated analysis can lead to overfitting (because 
the rows that comprise the test set have already been 
scaled based in part on knowledge of the values in the 
training set).

Despite these limitations, the importance of integrating 
cross-validation into most analysis pipelines is difficult to 

overstate. In applied machine learning settings, some 
form of cross-validation is practically mandatory when 
reporting the results of a predictive model. Adopting simi-
lar conventions in psychology would likely go a long way 
toward improving the reliability of reported findings. Con-
veniently, simple implementations of cross-validation can 
often be written in just a few lines of code, and off-the-
shelf utilities are available for many languages and statisti-
cal packages. We have made interactive examples written 
in Python and R available online (http://github.com/ 
tyarkoni/PPS2016).

Regularization

Cross-validation provides a means of estimating how 
capably a model can generalize to new data. However, it 
does not directly prevent overfitting (though it can do so 
indirectly—e.g., by facilitating better model selection). If 
a model is overfitting the data, the main contribution of 
cross-validation will be to inform the model’s author that 
the model is overfitting. Although such knowledge is 
undeniably useful, the fact remains that sometimes 
researchers want to actually improve their models and 
not just to know that the existing ones are performing 
inadequately. Here, another approach, called regulariza-
tion, can potentially be of greater utility.

Regularization consists of trying to improve a statistical 
prediction by constraining one’s model to respect prior 
knowledge. In practice, regularization in machine learn-
ing is most commonly accomplished by increasingly 
“penalizing” a model (technically, penalizing the cost 
function) as it grows more complex. That is, in addition 
to the standard objective(s) that a model is supposed to 
achieve, the estimation is also constrained to produce 
solutions that, other things being equal, are considered 
“simpler.” For example, in linear regression estimated via 
OLS—the foundation of most statistical analysis in psy-
chology—the goal of the estimation is to identify the set 
of coefficients that minimizes the sum of squared devia-
tions between the observed scores and the model’s pre-
dictions. In a widely used form of penalized regression 
called lasso regression (Tibshirani, 1996, 2011), this least-
squares criterion is retained, but the overall cost function 
that the estimation seeks to minimize now includes an 
additional penalty term that is proportional to the sum of 
the absolute values of the coefficients. In other words, 
the estimation of the regression model now has to find a 
set of coefficients that give an optimal compromise (opti-
mal in the sense of minimizing the cost function) between 
the two competing goals of (a) minimizing the sum-of-
squares and (b) having as small an absolute sum as pos-
sible. These two criteria are typically in tension with one 
another, because the more complex a model is allowed 
to be (e.g., the more nonzero coefficients it is allowed to 
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retain), the more variance it can explain in the observed 
scores, but this implies a larger sum of absolute coeffi-
cients. Thus, we once again see echoes of the bias-
variance tradeoff discussed above: Relative to OLS, lasso 
regression produces intentionally biased coefficients.

To intuitively see how a penalized regression method 
like the lasso can help reduce overfitting, consider how 
the behavior of OLS is impacted by the addition of the 
aforementioned penalty parameter. In the traditional 
(unpenalized) setting, linear regression virtually always 
produces a nonzero coefficient for every term in the 
model—because there is always some small statistical 
association between every predictor and the outcome 
variable. In contrast, the lasso will tend to “shrink” small 
coefficients to zero, because the net benefit of including 
each additional term in the prediction equation is coun-
terbalanced by an increase in the penalty term (i.e., the 

sum of the absolute values of all coefficients). In practice, 
a coefficient will only be retained if its incremental pre-
dictive utility is sufficiently large to offset the increment 
to the penalty. Precisely how large depends on the size 
of a penalty parameter that is under the analyst’s control. 
As the analyst increases the penalty parameter, the fitted 
model will be increasingly sparse (i.e., have more coef-
ficients estimated to be 0), because the model increas-
ingly prioritizes the reduction of the penalty term over 
the standard least-squares criterion. This shift is illustrated 
in the coefficient path diagram displayed in Figure 5, 
where coefficients steadily shrink as the penalty rises and 
eventually disappear entirely (i.e., go to 0) if the penalty 
is large enough.

Why would researchers opt for regularized forms of 
their favorite statistical methods (e.g., OLS regression)? 
The answer is that, in many cases, regularized predictions 

Fig. 5. Regularization via the lasso. Training/test performance of OLS and lasso regression in two sample datasets illustrate some of the conditions 
under which the lasso will tend to outperform OLS. (A) In the “dense” dataset with a low n to p ratio, the sample size is small (n = 100), and there 
are many predictors (p = 50), each of which makes a small individual contribution to the outcome. (B) In the “sparse” dataset with a high n to p 
ratio, the sample is large (n = 1000), the number of predictors is small (p = 20), and only a few (5) variables make nonzero (and large) contributions. 
The top panels display the coefficient paths for the lasso as the penalty parameter (x axis) increases (separately for each simulated dataset). Observe 
how predictors gradually drop out of the model (i.e., their coefficients are eventually reduced to 0) as the penalty rises and the lasso model increas-
ingly values the sparsity of the solution over the minimization of prediction error. The bottom panels display the total prediction error (measured 
with mean squared error) in the training (dashed lines) and test (solid lines) samples for both OLS (yellow) and lasso (blue) regression. Observe 
that, in the small, dense dataset, where the number of predictors is high relative to the sample size, OLS grossly overfits the data (the gap between 
the solid and dashed yellow lines is very large) and is outperformed by the lasso in the test data for a wide range of penalty settings (the solid blue 
line is below the solid yellow line for the entire x axis range). By contrast, when the sample size is large relative to the number of predictors, the 
performance gap is typically small, and lasso only outperforms OLS for narrowly tuned ranges of the penalty parameter, if at all. 
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will generalize much better to new data. The biggest ben-
efits are typically obtained when the number of potential 
predictors p is large relative to the sample size n—a situ-
ation that is not uncommon in many areas of psychology 
(e.g., personality, developmental, educational, relation-
ship research). Under such conditions, OLS tends to 
grossly overfit the training data, whereas a regularized 
approach like lasso regression will tend to perform much 
better for almost any reasonable value of the penalty 
parameter (e.g., Fig. 5A). The intuition for this is closely 
tied to the bias-variance tradeoff discussed earlier. When 
the number of available predictors is large relative to the 
number of observations, OLS regression will tend to 
overfit the data, because the odds are high that some of 
the many available predictors will happen to capture 
some variation in the training sample observations purely 
by chance. In other words, the variance of the solutions 
produced by OLS will be high (though the bias is low). 
The lasso, by contrast, is constrained to only retain coef-
ficients with large values. By formally introducing bias in 
this way, the analyst is in effect telling the lasso regres-
sion model to ignore small variations in the data and only 
pay attention to relatively strong patterns—which are, 
generally speaking, more likely to generalize to new 
samples.

Of course, as we noted earlier, there is no such thing 
as a free lunch. The downside of using a regularized 
method like lasso regression is that, under data-rich con-
ditions, careful tuning of the penalty parameter may be 
required in order to obtain better out-of-sample perfor-
mance. Worse, careless application can result in much 
higher out-of-sample prediction error (as is apparent, for 
instance, in Fig. 5B for very high values of the penalty 
parameter). Thus, our overarching point is not that 
researchers should always use regularized methods but 
that a thoughtful analyst should adapt her methods to the 
problem at hand. In some cases, OLS and other tradi-
tional analysis tools in psychology will be perfectly ade-
quate for the job; in other cases, application of traditional 
methods will result in catastrophically poor predictions 
that could have been easily avoided through application 
of common machine learning methods. Our argument is 
simply that psychologists should be sufficiently familiar 
with the latter methods to be able to apply them in cases 
where they are clearly indicated.

Psychology as a Predictive Science

Having introduced a number of core machine learning 
concepts and discussed their relation to traditional psy-
chological approaches, we now turn to consider concrete 
applications. In this section, we review machine learning 
applications to psychological research that go beyond 
the simple (though important) observation that large 

samples and routine cross-validation are critical in order 
to limit overfitting. We begin with applications that are 
relevant primarily to applied researchers and then con-
sider ways in which machine learning can be used to 
inform and advance psychological theory. In interactive 
notebooks made available online (http://github.com/
tyarkoni/PPS2016), we also provide sample Python and R 
code that illustrates the application of many of the meth-
ods described throughout this paper.

Predicting for the sake of prediction

In much of psychology, researchers privilege theoretical 
understanding over concrete prediction. However, in 
many applied domains—for example, much of industrial-
organizational psychology, educational psychology, and 
clinical psychology—achieving accurate prediction is 
often the primary stated goal of the research enterprise. 
For example, the finding that the personality trait of Con-
scientiousness is robustly associated with better academic 
performance (Poropat, 2009) appears important in large 
part because it seems to offer the promise of improved 
educational outcomes. As Poropat (2009) observed in 
motivating a large meta-analysis of personality and aca-
demic performance:

Apart from its theoretical value, there is considerable 
practical value in being able to statistically predict 
academic performance. Among the member countries 
of the Organisation for Economic Cooperation and 
Development (OECD), an average of 6.2% of gross 
domestic product is spent on educational activities, 
while the average young person in these countries 
will stay in education until the age of 22 (OECD, 
2007). Clearly, the academic performance of students 
is highly valued within these advanced economies, 
such that any increments in understanding of 
academic performance have substantial implications. 
(p. 323)

Although we find such reasoning compelling in prin-
ciple, as a practical matter, it is unclear what the actual 
implications are of observing a meta-analytic correlation 
of 0.19 between Conscientiousness and academic perfor-
mance. A key problem is that very few studies in this lit-
erature, or in other applied psychology domains, ever 
report cross-validated indices of predictive accuracy. 
Although we do not pretend to think that cross-validation 
alone is sufficient to bridge the gap between research 
study and real-world application, it is a critical step in the 
right direction. We suggest that applied psychologists 
should develop the habit of reporting cross-validated 
results alongside standard goodness-of-fit metrics or sta-
tistical significance tests whenever possible—ideally in 
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predictively meaningful units (e.g., the proportion of mis-
classified patients, or the average error in predicted class 
grade).

Using machine learning techniques 
instrumentally

Machine learning concepts and techniques can often 
increase the efficiency and reproducibility of a research-
er’s analysis pipeline even when they do not appreciably 
alter the end result. A common use case occurs when 
researchers seek to demonstrate the reliability of a par-
ticular measure by appealing to its convergence with 
other measures and/or its consistency across different 
raters. In such cases, a demonstration that a variable can 
be accurately predicted out-of-sample using any number 
of other available variables can achieve essentially the 
same ends much more efficiently. For example, Du, Tao, 
and Martinez (2014) proposed that, in addition to the six 
“basic” facial emotional expressions of happiness, sur-
prise, sadness, anger, fear, and disgust (Ekman, 1992), 
human beings can reliably produce and detect additional 
compound expressions. After having 230 participants 
produce 15 such expressions (e.g., happily surprised, 
happily disgusted, sadly fearful, etc.), Du et al. used 
10-fold cross-validated kernel discriminant analysis to 
demonstrate that these expressions could be discrimi-
nated from one another with approximately 75% accu-
racy, lending credence to the idea that facial expressions 
of compound emotions can indeed convey information 
about more complex emotional states than have typically 
been considered in the literature. Although a similar con-
clusion could presumably be achieved by obtaining rat-
ings from human subjects, the use of an automated 
classifier is considerably more efficient, reproducible, 
and extensible (e.g., one would not have to recruit new 
raters when new photos were added to the stimulus set).

The same approach can also be profitably applied in 
cases where manual efforts would be hopelessly imprac-
tical. For example, Yarkoni, Ashar, and Wager (2015) 
studied how individual differences in the personality trait 
of Agreeableness modulate people’s responses to appeals 
for charitable donation. To maximize statistical power 
and support more generalizable conclusions ( Judd, 
Westfall, & Kenny, 2016; Westfall, Kenny, & Judd, 2014), 
the authors opted to dynamically generate every stimulus 
at presentation time by combining constituent elements 
into a never-before-seen composite. This decision intro-
duced an analytical challenge, however: Because each 
stimulus was only ever seen by a single subject on a 
single trial, how could the stimuli be reliably normed? 
The author solved the problem by using machine learn-
ing techniques to predict the expected rating of each 
composite stimulus based on the mean ratings of the 

constituent elements. Cross-validated analyses demon-
strated good predictive accuracy, enabling the authors to 
use the resulting norms in their subsequent analyses. 
Needless to say, obtaining human ratings for nearly 5,000 
different stimuli would have been considerably more 
challenging.

Evaluating model performance using 
consensus metrics

One attractive feature of predictive accuracy as a criterion 
for evaluating models is that it can serve as a common 
metric for comparing the performance of radically 
different, nonnested statistical models. A somewhat tradi-
tional way to compare nonnested models is to rely on  
the Aikake Information Criterion (AIC) or Bayesian 
Information Criterion (BIC), but these are subject to a 
variety of somewhat complicated assumptions (Burnham 
& Anderson, 2004; Vrieze, 2012) and in any case can only 
be computed for models that have a tractable likelihood 
function, which is not the case for many commonly used 
machine learning algorithms (e.g., random forests). A 
focus on predictive accuracy can provide a simple, gen-
eral solution that largely sidesteps such issues. We believe 
most researchers can agree that a good model should be 
able to accurately predict new observations—and, other 
things being equal, better models should generate better 
predictions.

An emphasis on predictive accuracy measures has 
played a central role in facilitating rapid progress in 
machine learning (Donoho, 2015). Many machine learn-
ing researchers now evaluate their models primarily by 
assessing their performance on large “gold standard” 
datasets (e.g., the ImageNet database in computer vision; 
Deng et al., 2009). Importantly, the presence of consen-
sus metrics for model evaluation has not led researchers 
to abdicate theoretically motivated work in favor of brute 
force computation or trial-and-error experimentation. To 
the contrary, most major breakthroughs in prediction 
accuracy over the past decade—particularly in the area of 
deep learning—can be traced directly to important new 
computational or theoretical insights (for review, see 
LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015). We 
believe that many fields in psychology would benefit 
from a similar approach. Indeed, a similar trend is already 
evident in some domains; for example, the development 
of large psycholinguistic databases such as the English 
Lexicon Project (Balota et al., 2007) has provided 
researchers with a powerful and widely used benchmark 
for evaluating new measures and models (e.g., Brysbaert 
& New, 2009; Yarkoni, Balota, & Yap, 2008). And just as 
in machine learning, the production of new models that 
explain ever more variance in behavioral tasks like word 
naming has been guided by, and reciprocally informs, 
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psycholinguistic theory (e.g., Baayen, Milin, Đurd̄ević, 
Hendrix, & Marelli, 2011; Perry, Ziegler, & Zorzi, 2010; 
Yap, Balota, Sibley, & Ratcliff, 2012).

Increasing interpretability

Machine learning algorithms are sometimes pejoratively 
described as “black box” approaches that can produce 
good predictions but are virtually impossible to under-
stand. Although it is true that the representations learned 
by many state-of-the-art machine learning approaches—
most notably “deep” artificial neural networks (LeCun 
et al., 2015)—can be impenetrable to human compre-
hension (but see Zeiler & Fergus, 2014), this is a property 
of specific approaches or implementations and not a fea-
ture of predictive models in general. To the contrary, 
researchers who value interpretability over predictive 
accuracy can directly benefit from machine learning 
approaches in at least five ways.

First, as we discussed above, many machine learning 
algorithms provide explicit control over the complexity of 
the fitted model—for example, by varying the penalty 
parameter in lasso regression (cf. Fig. 5)—thus allowing 
researchers to deliberately seek out simpler solutions than 
traditional techniques like OLS would produce (at the 
potential cost of reduced predictive power). Second, some 
classes of learning algorithms are intrinsically interpreta-
ble. For example, a class of algorithms called decision 
trees generate simple conditional rules (e.g., “if gender is 
Female and age is greater than 42, then predict a value of 
1”) that are much easier to understand intuitively than the 
continuous-valued prediction equations generated by 
regression approaches (Apté & Weiss, 1997).

Third, a prediction-focused approach often makes it 
easier to quantify and appreciate the uncertainty sur-
rounding any given interpretation of one’s data. Statisti-
cians regularly caution scientists that regression 
coefficients cannot be assigned straightforward interpre-
tations. For example, we and others have demonstrated 
that under typical measurement conditions, statistical sig-
nificance patterns observed in fitted regression models 
are often very unstable and can produce highly mislead-
ing conclusions (Shear & Zumbo, 2013; Westfall & 
Yarkoni, 2016). Although a focus on prediction cannot 
solve such problems, it will often lead to better calibrated 
(and generally more careful) interpretation of results, as 
researchers will observe that very different types of mod-
els (e.g., lasso regression vs. support vector regression vs. 
random forests) can routinely produce comparably good 
predictions even when model interpretations are very 
different—highlighting the uncertainty in the model 
selection and suggesting that the solutions produced by 
any particular model should be viewed with a healthy 
degree of skepticism.

Fourth, although it is true that the contributions of 
individual predictors can be hard to interpret in complex 
predictive models, a relatively common and often very 
informative technique is to compare a model’s predictive 
performance when different sets of predictive features are 
included. This practice is closely related to that of hierar-
chical regression on sets of variables (Cohen, Cohen, 
West, & Aiken, 2013), which may be more familiar to 
psychologists. For example, suppose one seeks to under-
stand which factors predict binge drinking in adoles-
cents, as in a study discussed earlier (Whelan et al., 2014). 
There are literally thousands of potentially informative—
but densely intercorrelated—demographic, dispositional, 
behavioral, genetic, and neurobiological variables one 
could investigate. However, by comparing a “full” model 
that contains the full set of predictive features with partial 
models that iteratively omit all variables related to, say, 
brain structure, personality, or personal history, one can 
potentially gain valuable insights into the relative contri-
butions of different factors (e.g., Whelan et al., 2014, 
showed that personal history alone is considerably more 
useful for predicting binge drinking than biological vari-
ables, though the latter make a small incremental contri-
bution). Such an approach is also arguably a more 
accurate reflection of the true causal graphs in most areas 
of psychology, which are typically dense and populated 
by many small influences (the so-called “crud factor” in 
psychology; Meehl, 1990).

Lastly, a prediction-focused perspective can help gain 
a deeper understanding of the general structure of one’s 
data. For example, suppose one is interested in the rela-
tionship between personality and language use (Fast & 
Funder, 2008; Pennebaker & King, 1999; Yarkoni, 2010). 
The traditional way to approach this question would be 
to ask which language variables are associated with spe-
cific traits (e.g., Do Extraverts use socialization-related 
words more often?). However, a complementary question 
that should perhaps be asked first is, What kind of param-
eter space are we operating in? That is, is the language/
personality space sparse, so that a relatively small num-
ber of language variables account for the bulk of the 
explainable effects of personality on language? Or is it 
dense, with hundreds, or even thousands, of distinct but 
very small contributions? And can the space be ade-
quately modeled by considering just the (additive) main 
effects of the predictors, or must one consider potentially 
very complex higher order interactions in order to gener-
ate adequate predictions?

Such questions may have important implications for 
both theoretical understanding and study design but are 
not easily addressed using classical statistical approaches. 
By contrast, the relative performance of different kinds of 
machine learning algorithms can potentially provide 
important insights into the nature of the data. For instance, 
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if lasso regression outperforms ridge regression (a tech-
nique similar to lasso regression but that does not place 
the same emphasis on sparseness), then one might con-
jecture that the underlying causal graph is relatively 
sparse. If generalized additive models, support vector 
machines, or random forests outperform standard regres-
sion models, then there may be relatively large low-order 
(e.g., two-way) interactions or other nonlinearities that 
the machine learning methods implicitly capture but that 
regression does not (Breiman, 2001a; Friedman, 2001;  
S. Wood, 2006). And if very complex deep learning archi-
tectures perform much better than virtually all other 
models—as is increasingly the case in many psychology-
related domains such as computer vision and natural lan-
guage processing (LeCun et al., 2015)—one may want to 
consider the possibility that simpler, more interpretable 
models are simply not adequate for explaining the phe-
nomenon of interest.

Asking predictive questions

Perhaps the biggest benefits of a prediction oriented 
within psychology are likely to be realized when psy-
chologists start asking research questions that are natu-
rally amenable to predictive analysis. Doing so requires 
setting aside, at least some of the time, deeply ingrained 
preoccupations with identifying the underlying causal 
mechanisms that are mostly likely to have given rise to 
some data—in other words, choosing complex predic-
tion-focused models over simpler, theoretically elegant 
models. Although this may initially sound like a radical 
prescription, we argue that, often, only a slight shift in 
perspective is required. In many cases, a traditional 
research question is already arguably more naturally 
addressed using a predictive approach. In other cases, a 
research question can be relatively easily reformulated 
into a form amenable to predictive analysis. We consider 
two published examples of such predictive research 
questions.

Inferring personality from online media. A grow-
ing literature in personality has focused on the question 
of whether it is possible to infer a person’s personality 
from his or her social media footprint—for example, his 
or her Facebook profile (Back et al., 2010; Gosling, 
Augustine, Vazire, Holtzman, & Gaddis, 2011), personal 
blog or website (Vazire & Gosling, 2004; Yarkoni, 2010), 
musical preferences (Rawlings & Ciancarelli, 1997; Rentfrow 
& Gosling, 2003), and so on. This question has tradition-
ally been addressed by testing for statistically significant 
associations between personality dimensions and other 
variables. For example, Back et al. (2010) found that 
observer ratings of Facebook profiles were correlated with 
the target individuals’ actual self-reported personalities but 

not with the targets’ ideal self-ratings; the authors con-
cluded that Facebook profiles reflect people’s real selves 
and not self-idealizations.

Although such an approach is informative, it is not 
necessarily the most sensitive way to address what 
appears to be an inherently predictive question. If one 
wants to know if personality can be discerned from pub-
licly available digital records, or if some traits are easier 
to predict than others, one should ideally build a predic-
tive model that has as its primary goal the successful 
prediction of the outcome in question. The extent to 
which one is able to predict that outcome when leverag-
ing all available information can often provide valuable 
insights. For example, in a massive study involving over 
58,000 Facebook users who completed a variety of psy-
chometric questionnaires, Kosinski, Stillwell, and Graepel 
(2013) sought to predict stable individual differences 
from the “Likes” displayed on participants’ profile pages 
(an average of 170 Likes per person). Using cross-validated 
linear and logistic regression models, the authors were 
able to predict the Big Five personality traits with varying 
accuracy (cross-validated correlation coefficients ranged 
from 0.29 for Conscientiousness to 0.43 for Openness to 
Experience). In addition to unambiguously demonstrating 
that personality can be reliably inferred from online foot-
prints, a major advantage of the Kosinski et al. study is its 
ability to provide good comparative estimates of how well 
different traits can be predicted using multivariate predic-
tive models—information that cannot be easily extracted 
from the simple bivariate associations and p values typi-
cally reported in psychology.

Inferring implicit recognition of subjectively unfa-
miliar stimuli. The outcomes of criminal investiga-
tions and judicial proceedings often hinge on whether a 
suspect or witness can remember particular people or 
objects, such as those from a crime scene. Yet eyewit-
nesses frequently misremember events (Loftus & Palmer, 
1996), and suspects may be motivated to respond falsely. 
A question of considerable theoretical and practical sig-
nificance is whether the human mind/brain encodes a 
trace of the true events one has witnessed, even when 
the person is unable or unwilling to correctly report this 
recognition. Extracting such knowledge using behavioral 
methods is a daunting proposition, but a tantalizing pos-
sibility is that brain imaging technology such as fMRI 
might be able to help identify otherwise inaccessible rep-
resentations of true events.

To test this possibility, Rissman, Greely, and Wagner 
(2010) had 20 participants study a set of faces and then, 
after a 1-hour delay, complete a recognition task during 
fMRI scanning. The authors used a regularized logistic 
regression model in which each participant’s distributed 
fMRI activation patterns on each trial were used to 
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predict both the subjective recognition ratings given by 
participants and the objective (old vs. new) status of each 
presented face, with the predictive accuracy of the model 
assessed using LOOCV. They found that although the 
brain data could be used to predict participants’ subjec-
tive recognition ratings with very high (up to 90%) accu-
racy, it could not predict the objective old versus new 
status of faces consistently above chance levels. These 
results are important not only for their theoretical interest 
but also because they call into question the legal admis-
sibility of using brain data to demonstrate that a suspect 
does or does not recognize some person or object. 
Although the Rissman et al. study certainly does not rep-
resent the final word on the matter (e.g., the sample size 
was relatively small, so the predictive model may have 
been underpowered), it provides an elegant proof-of-
concept of the utility of a predictive approach in address-
ing questions of basic interest to many cognitive 
neuroscientists and cognitive psychologists. We antici-
pate that similar applications will become increasingly 
widespread in the coming years.

Conclusion

In an influential statistics paper, Breiman (2001b) argued 
that there are two cultures in statistical modeling. The 
vast majority of statisticians belong to the “data modeling 
culture,” in which data are assumed to arise from a par-
ticular data-generating process, and the primary goal is to 
estimate the true parameters of this process. By contrast, 
a minority of statisticians (and most machine learning 
researchers) belong to the “algorithmic modeling cul-
ture,” in which the data are assumed to be the result of 
some unknown and possibly unknowable process and 
the primary goal is to find an algorithm that results in the 
same outputs as this process given the same inputs. 
These two cultures align quite closely with what we have 
called the explanation-focused and prediction-focused 
approaches to science, respectively. Our argument has 
been that psychologists stand to gain a lot by relaxing 
their emphasis on identifying the causal mechanisms 
governing behavior and focusing to a greater extent on 
predictive accuracy.

We hasten to emphasize that we are arguing for a rela-
tive redistribution of psychologists’ energies and not for 
an outright abandonment of efforts to mechanistically 
explain human behavior. In our discussion of explana-
tion and prediction, we have emphasized the differences 
between the two approaches in order to make it clear 
what shifting toward a more predictive psychology would 
entail and what benefits such a shift would provide. We 
readily acknowledge, however, that prediction-focused 
approaches are not appropriate for all research questions 
in psychology. In particular, well-designed, high-powered, 

randomized, controlled experiments are, and should 
remain, the gold standard for drawing causal conclusions 
about the way the human mind operates. More generally, 
we are not suggesting that psychologists (save perhaps 
those working in applied settings) should view predic-
tion as an end unto itself, to be prioritized ahead of 
explanation. Rather, our contention is that researchers’ 
failure to take prediction seriously is a direct contributor 
to many of the problems observed in explanatory psy-
chology in recent years. Thus, we argue that even in 
cases where causal explanation is (appropriately) the 
primary objective, machine learning concepts and meth-
ods can still provide invaluable benefits when used 
instrumentally—by minimizing p-hacking, increasing 
research efficiency, facilitating evaluation of model per-
formance, and increasing interpretability.

Ultimately, the new machine learning approaches 
working their way into psychology should be seen as 
opportunities, not threats. As with any major advance in 
methodology, psychological scientists should work to 
make sure they are equipped to apply a mix of classical 
and new methods to their research as needed. There is 
no denying that in many cases, a focus on prediction will 
reveal major holes in an otherwise elegant explanatory 
story, and many well-known findings—some with seem-
ingly large effect sizes—will likely fail to survive rigorous 
cross-validated analysis in large samples. But those 
explanatory models that successfully capture important 
aspects of human psychology should be much more 
likely to survive such tests—and will emerge with stron-
ger empirical support as a result. What we will hopefully 
then be left with are models that can demonstrably do 
something foundational to the study of psychology: reli-
ably predict human behavior.
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Notes

1. In fact, it is well known that R2 is a biased estimator even of 
the performance of equation 1. Adjustments to the R2 statistic 
that correct for this bias do exist and are sometimes applied, 
but we note that even these adjusted R2 statistics still estimate 
the performance of equation 1 and not equation 2. This dis-
tinction is illustrated a little more concretely at the end of this 
subsection.
2. Note that this is a heuristic and not a law. There are plenty 
of situations where a poorly chosen model will perform terribly 
no matter how much data it is fed.



Prediction vs. Explanation 1119

3. Note that we use the term Big Data here to refer to datasets 
that are “long” rather than “wide.” The critical element in reduc-
ing overfitting is the number of observations relative to the 
number of predictors. Datasets that include thousands of vari-
ables but have relatively few cases are, if anything, even more 
susceptible to overfitting.
4. It is important to note that, when evaluating the test perfor-
mance of a fitted model, one must apply the exact fitted model—
for example, the specific regression equation obtained from 
the training dataset—to the test dataset. We have occasionally 
reviewed manuscripts in which the authors report that they “cross-
validated” their analyses when in fact they have simply fitted the 
same model a second time in a new dataset. The latter approach 
is not cross-validation and does little to mitigate overfitting.
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