Code
options(conflicts.policy = "depends.ok")
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_ml.R?raw=true",
devtoolssha1 = "77e91675366f10788c6bcb59fa1cfc9ee0c75281")
tidymodels_conflictRules()
Use of root mean square error (RMSE) in training and validation sets for model performance evaluation
The General Linear Model as a machine learning model
K Nearest Neighbor (KNN)
Our goal in this unit is to build a machine learning regression model that can accurately (we hope) predict the sale_price
for future sales of houses (in Iowa? more generally?)
To begin this project we need to:
options(conflicts.policy = "depends.ok")
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_ml.R?raw=true",
devtoolssha1 = "77e91675366f10788c6bcb59fa1cfc9ee0c75281")
tidymodels_conflictRules()
tidymodels
and tidyverse
because the other functions we need are only called occasionally (so we will call them by namespace.)library(tidyverse) # for general data wrangling
library(tidymodels) # for modeling
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_eda.R?raw=true",
devtoolssha1 = "c045eee2655a18dc85e715b78182f176327358a7")
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_plots.R?raw=true",
devtoolssha1 = "def6ce26ed7b2493931fde811adff9287ee8d874")
theme_set(theme_classic())
options(tibble.width = Inf)
<- "./data" path_data
<- function(df){
class_ames |>
df mutate(across(where(is.character), factor)) |>
mutate(overall_qual = factor(overall_qual, levels = 1:10),
1garage_qual = suppressWarnings(fct_relevel(garage_qual,
c("no_garage", "po", "fa",
"ta", "gd", "ex"))))
}
suppressWarnings()
<-
data_trn read_csv(here::here(path_data, "ames_clean_class_trn.csv"),
col_types = cols()) |>
class_ames() |>
glimpse()
Rows: 1,465
Columns: 10
$ sale_price <dbl> 105000, 126000, 115000, 120000, 99500, 112000, 122000, 12…
$ gr_liv_area <dbl> 896, 882, 864, 836, 918, 1902, 900, 1225, 1728, 858, 1306…
$ lot_area <dbl> 11622, 8400, 10500, 2280, 7892, 8930, 9819, 9320, 13260, …
$ year_built <dbl> 1961, 1970, 1971, 1975, 1979, 1978, 1967, 1959, 1962, 195…
$ overall_qual <fct> 5, 4, 4, 7, 6, 6, 5, 4, 5, 5, 3, 5, 4, 5, 3, 5, 2, 6, 5, …
$ garage_cars <dbl> 1, 2, 0, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, …
$ garage_qual <fct> ta, ta, no_garage, ta, ta, ta, ta, no_garage, no_garage, …
$ ms_zoning <fct> res_high, res_low, res_low, res_low, res_low, res_med, re…
$ lot_config <fct> inside, corner, fr2, fr2, inside, inside, inside, inside,…
$ bldg_type <fct> one_fam, one_fam, one_fam, town_inside, town_end, duplex,…
<- read_csv(here::here(path_data, "ames_clean_class_val.csv"),
data_val col_types = cols()) |>
class_ames() |>
glimpse()
Rows: 490
Columns: 10
$ sale_price <dbl> 215000, 189900, 189000, 171500, 212000, 164000, 394432, 1…
$ gr_liv_area <dbl> 1656, 1629, 1804, 1341, 1502, 1752, 1856, 1004, 1092, 106…
$ lot_area <dbl> 31770, 13830, 7500, 10176, 6820, 12134, 11394, 11241, 168…
$ year_built <dbl> 1960, 1997, 1999, 1990, 1985, 1988, 2010, 1970, 1971, 197…
$ overall_qual <fct> 6, 5, 7, 7, 8, 8, 9, 6, 5, 6, 7, 9, 8, 8, 7, 8, 6, 5, 5, …
$ garage_cars <dbl> 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, …
$ garage_qual <fct> ta, ta, ta, ta, ta, ta, ta, ta, ta, ta, ta, ta, ta, ta, t…
$ ms_zoning <fct> res_low, res_low, res_low, res_low, res_low, res_low, res…
$ lot_config <fct> corner, inside, inside, inside, corner, inside, corner, c…
$ bldg_type <fct> one_fam, one_fam, one_fam, one_fam, town_end, one_fam, on…
NOTE: Remember, I have held back an additional test set that we will use only once to evaluate the final model that we each develop in this unit.
We will also make a dataframe to track validation error across the models we fit
<- tibble(model = character(), rmse_val = numeric()) |>
error_val glimpse()
Rows: 0
Columns: 2
$ model <chr>
$ rmse_val <dbl>
We will fit regression models with various model configurations.
These configurations will differ with respect to statistical algorithm:
These configurations will differ with respect to the features
To build models that will work well in new data (e.g., the data that I have held back from you so far):
We have split the remaining data into a training and validation set for our own use during model building
We will fit models in train
We will evaluate them in validation
Remember that we:
sale_price
) split of the data at the end of cleaning EDA to create training and validation setsYou will work with all of my predictors and all the predictors you used for your EDA when you do the application assignment for this unit
Pause for a moment to answer this question:
These models will all overfit the dataset within which they are fit to some degree.
In other words, they will predict both systematic variance (the DGP) and some noise in the training set. However, they will differ in how much they overfit the training set.
As the models get more flexible they will have the potential to overfit to a greater degree.Models with a larger number of features (e.g., more predictors, features based on interactions as well as raw predictors) will overfit to a greater degree. All other things equal, the non-parametric KNN will also be more flexible than the general linear model so it may overfit to a greater degree as well if the true DGP is linear on the features.
Therefore, just because a model fits the training set well does not mean it will work well in new data because the noise will be different in every new dataset. This overfitting will be removed from our performance estimate if we calculate it with new data (the validation set).
Let’s take a quick look at the available raw predictors in the training set
|> skim_all() data_trn
Name | data_trn |
Number of rows | 1465 |
Number of columns | 10 |
_______________________ | |
Column type frequency: | |
factor | 5 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | n_unique | top_counts |
---|---|---|---|---|
overall_qual | 0 | 1 | 10 | 5: 424, 6: 350, 7: 304, 8: 176 |
garage_qual | 0 | 1 | 5 | ta: 1312, no_: 81, fa: 57, gd: 13 |
ms_zoning | 0 | 1 | 7 | res: 1157, res: 217, flo: 66, com: 13 |
lot_config | 0 | 1 | 5 | ins: 1095, cor: 248, cul: 81, fr2: 39 |
bldg_type | 0 | 1 | 5 | one: 1216, tow: 108, dup: 63, tow: 46 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
lot_area | 0 | 1 | 10144.16 | 8177.55 | 1476 | 7500 | 9375 | 11362 | 164660 | 11.20 | 182.91 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880 | 1953 | 1972 | 2000 | 2010 | -0.54 | -0.62 |
garage_cars | 1 | 1 | 1.78 | 0.76 | 0 | 1 | 2 | 2 | 4 | -0.26 | 0.10 |
Remember from our modeling EDA that we have some issues to address as part of our feature engineering:
sale_price
All of this will be accomplished with a recipe
But first, let’s discuss/review our first statistical algorithm
We will start with only a quick review of the use of the simple (one feature) linear model (LM) as a machine learning model because you should be very familiar with this statistical model at this point
Applied to our regression problem, we might fit a model such as:
The (general) linear model is a parametric model. We need to estimate two parameters using our training set
You already know how to do this using lm()
in base R. However, we will use the tidymodels
modeling approach.
We use tidymodels
because:
To fit a model with a specific configuration, we need to:
prep()
it with training databake()
it with data you want to use to calculate feature matrixThese steps are accomplished with functions from the recipes and parsnip packages.
We will start with a simple model configuration
gr_liv_area
)Set up a VERY SIMPLE feature engineering recipe
~
~
.<-
rec recipe(sale_price ~ gr_liv_area, data = data_trn)
rec
summary(rec)
We can then prep the recipe and bake the data to make our feature matrix from the training dataset
data_trn
and then bake data_trn
so that we have features from our training set to train/fit the model.<- rec |>
rec_prep prep(training = data_trn)
new_data = NULL
<- rec_prep |>
feat_trn bake(new_data = NULL)
You should always review the feature matrix to make sure it looks as you expect
sale_price
)gr_liv_area
)|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 2 |
_______________________ | |
Column type frequency: | |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
Now let’s consider the statistical algorithm
tidymodels
breaks this apart into two pieces for claritylinear_reg()
, nearest_neighbor()
, logistic_reg()
set_mode()
to indicate if if the model is for regression or classification broadly
'linear_reg()
is only for regression.tidymodels
calls this setting the enginelm
, kknn
, glm
, glmnet
You can see the available engines (and modes: regression vs. classification) for the broad classes of algorithms
We will work with many of these algorithms later in the course
show_engines("linear_reg")
# A tibble: 7 × 2
engine mode
<chr> <chr>
1 lm regression
2 glm regression
3 glmnet regression
4 stan regression
5 spark regression
6 keras regression
7 brulee regression
show_engines("nearest_neighbor")
# A tibble: 2 × 2
engine mode
<chr> <chr>
1 kknn classification
2 kknn regression
show_engines("logistic_reg")
# A tibble: 7 × 2
engine mode
<chr> <chr>
1 glm classification
2 glmnet classification
3 LiblineaR classification
4 spark classification
5 keras classification
6 stan classification
7 brulee classification
show_engines("decision_tree")
# A tibble: 5 × 2
engine mode
<chr> <chr>
1 rpart classification
2 rpart regression
3 C5.0 classification
4 spark classification
5 spark regression
show_engines("rand_forest")
# A tibble: 6 × 2
engine mode
<chr> <chr>
1 ranger classification
2 ranger regression
3 randomForest classification
4 randomForest regression
5 spark classification
6 spark regression
show_engines("mlp")
# A tibble: 6 × 2
engine mode
<chr> <chr>
1 keras classification
2 keras regression
3 nnet classification
4 nnet regression
5 brulee classification
6 brulee regression
You can load even more engines from the discrim
package. We will use some of these later too. You need to load the package to use these engines.
library(discrim, exclude = "smoothness") # needed for these engines
show_engines("discrim_linear")
# A tibble: 4 × 2
engine mode
<chr> <chr>
1 MASS classification
2 mda classification
3 sda classification
4 sparsediscrim classification
show_engines("discrim_regularized")
# A tibble: 1 × 2
engine mode
<chr> <chr>
1 klaR classification
show_engines("naive_Bayes")
# A tibble: 2 × 2
engine mode
<chr> <chr>
1 klaR classification
2 naivebayes classification
You can also better understand how the engine will be called using translate()
Not useful here but will be with more complicated algorithms
linear_reg() |>
set_engine("lm") |>
translate()
Linear Regression Model Specification (regression)
Computational engine: lm
Model fit template:
stats::lm(formula = missing_arg(), data = missing_arg(), weights = missing_arg())
Let’s combine our feature matrix with an algorithm to fit a model in our training set using only raw gr_liv_area
as a feature
Note the specification of
lm
are only for the regression mode).
to indicate all features in the matrix.
gr_liv_area
.
for all features and use of feature matrix from training set
We can get the parameter estimates, standard errors, and statistical tests for each \(\beta\) = 0 for this model using tidy()
from the broom
package (loaded as part of the tidyverse
)
|> tidy() fit_lm_1
# A tibble: 2 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 16561. 4537. 3.65 2.72e- 4
2 gr_liv_area 109. 2.85 38.2 4.78e-222
There are a variety of ways to pull out the estimates for each feature (and intercept)
Option 1: Pull all estimates from the tidy object
|>
fit_lm_1 tidy() |>
pull(estimate)
[1] 16560.9991 108.9268
Option 2: Extract a single estimate using $ and row number. Be careful that order of features won’t change! This assumes the feature coefficient for the relevant feature is always the second coefficient.
tidy(fit_lm_1)$estimate[[2]]
[1] 108.9268
Option 3: Filter tidy df to the relevant row (using term ==) and pull the estimate. Safer!
|>
fit_lm_1 tidy() |>
filter(term == "gr_liv_area") |>
pull(estimate)
[1] 108.9268
Option 4: Write a function if we plan to do this a lot. We include this function in the fun_ml.R
script in our repo. Better still (safe and code efficient)!
<- function(the_fit, the_term){
get_estimate |>
the_fit tidy() |>
filter(term == the_term) |>
pull(estimate)
}
and then use this function
get_estimate(fit_lm_1, "gr_liv_area")
[1] 108.9268
get_estimate(fit_lm_1, "(Intercept)")
[1] 16561
Regardless of the method, we now have a simple parametric model for sale_price
\(\hat{sale\_price} = 1.6561\times 10^{4} + 108.9 * gr\_liv\_area\)
We can get the predicted values for sale_price
(i.e., \(\hat{sale\_price}\)) in our validation set using predict()
However, we first need to make a feature matrix for our validation set
data_trn
)data_val
<- rec_prep |>
feat_val bake(new_data = data_val)
As always, we should skim these new features
|> skim_all() feat_val
Name | feat_val |
Number of rows | 490 |
Number of columns | 2 |
_______________________ | |
Column type frequency: | |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1493.0 | 483.78 | 480 | 1143.5 | 1436 | 1729.5 | 3608 | 0.92 | 1.16 |
sale_price | 0 | 1 | 178512.8 | 75493.59 | 35311 | 129125.0 | 160000 | 213000.0 | 556581 | 1.42 | 2.97 |
Now we can get predictions using our model with validation features
predict()
returns a dataframe with one column named .pred
and one row for every observation in dataframe (e.g., validation feature set)
predict(fit_lm_1, feat_val)
# A tibble: 490 × 1
.pred
<dbl>
1 196944.
2 194003.
3 213065.
4 162632.
5 180169.
6 207401.
7 218729.
8 125923.
9 135509.
10 133004.
# ℹ 480 more rows
We can visualize how well this model performs in the validation set by plotting predicted sale_price
(\(\hat{sale\_price}\)) vs. sale_price
(ground truth in machine learning terminology) for these data
We might do this a lot so let’s write a function. We have also included this function in fun_ml.R
<- function(truth, estimate) {
plot_truth ggplot(mapping = aes(x = truth, y = estimate)) +
geom_abline(lty = 2, color = "red") +
geom_point(alpha = 0.5) +
labs(y = "predicted outcome", x = "outcome") +
coord_obs_pred() # scale axes uniformly (from tune package)
}
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_1, feat_val)$.pred)
Perfect performance would have all the points right on the dotted line (same value for actual and predicted outcome)
sale_price
and gr_liv_area
were positively skewedWe can quantify model performance by selecting a performance metric
yardstick
package within the tidymodels
framework supports calculation of many performance metrics for regression and classification modelsRoot mean square error (RMSE) is a common performance metric for regression models
rmse_vec()
from the yardstick
packagermse_vec(truth = feat_val$sale_price,
estimate = predict(fit_lm_1, feat_val)$.pred)
[1] 51375.08
Let’s record how well this model performed in validation so we can compare it to subsequent models
<- bind_rows(error_val,
error_val tibble(model = "simple linear model",
rmse_val = rmse_vec(truth = feat_val$sale_price,
estimate = predict(fit_lm_1,
$.pred)))
feat_val) error_val
# A tibble: 1 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
NOTE: I will continue to bind RMSE to this dataframe for newer models but plan to hide this code chuck to avoid distractions. You can reuse this code repeatedly to track your own models if you like. (Perhaps we should write a function??)
For explanatory purposes, we might want to visualize the relationship between a feature and the outcome (in addition to examining the parameter estimates and the associated statistical tests)
gr_liv_area
superimposed over a scatterplot of the raw data from the validation set|>
feat_val ggplot(aes(x = gr_liv_area)) +
geom_point(aes(y = sale_price), color = "gray") +
geom_line(aes(y = predict(fit_lm_1, data_val)$.pred),
linewidth = 1.25, color = "blue") +
ggtitle("Validation Set")
gr_liv_area
and sale_price
.sale_price
(or gr_liv_area
)We can improve model performance by moving from simple linear model to a linear model with multiple features derived from multiple predictors
We have many other numeric variables available to use, even in this pared down version of the dataset.
|> names() data_trn
[1] "sale_price" "gr_liv_area" "lot_area" "year_built" "overall_qual"
[6] "garage_cars" "garage_qual" "ms_zoning" "lot_config" "bldg_type"
Let’s expand our model to also include lot_area
, year_built
, and garage_cars
Again, we need:
With the addition of new predictors, we now have a feature engineering task
garage_cars
in the training setA simple solution is to do median imputation - substitute the median of the non-missing scores for any missing score.
tidymodels
websiteLet’s add this to our recipe. All of the defaults are appropriate but you should see ?step_impute_median()
to review them
<-
rec 1recipe(sale_price ~ gr_liv_area + lot_area + year_built + garage_cars,
data = data_trn) |>
step_impute_median(garage_cars)
+
between them
Now we need to
<- rec |>
rec_prep 1prep(data_trn)
training =
at this point. Remember, we prep recipes with training data.
<- rec_prep |>
feat_trn 1bake(data_trn)
new_data =
but remember, we use NULL if we want the previously saved training features. If instead, we want features for new data, we provide that dataset.
garage_qual
|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
lot_area | 0 | 1 | 10144.16 | 8177.55 | 1476 | 7500 | 9375 | 11362 | 164660 | 11.20 | 182.91 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880 | 1953 | 1972 | 2000 | 2010 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 1.78 | 0.76 | 0 | 1 | 2 | 2 | 4 | -0.26 | 0.10 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
<- rec_prep |>
feat_val 1bake(data_val)
data_val
|> skim_all() feat_val
Name | feat_val |
Number of rows | 490 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1493.00 | 483.78 | 480 | 1143.5 | 1436.0 | 1729.50 | 3608 | 0.92 | 1.16 |
lot_area | 0 | 1 | 10462.08 | 10422.55 | 1680 | 7500.0 | 9563.5 | 11780.75 | 215245 | 15.64 | 301.66 |
year_built | 0 | 1 | 1971.08 | 30.96 | 1875 | 1954.0 | 1975.0 | 2000.00 | 2010 | -0.66 | -0.41 |
garage_cars | 0 | 1 | 1.74 | 0.76 | 0 | 1.0 | 2.0 | 2.00 | 4 | -0.24 | 0.22 |
sale_price | 0 | 1 | 178512.82 | 75493.59 | 35311 | 129125.0 | 160000.0 | 213000.00 | 556581 | 1.42 | 2.97 |
Now let’s combine our algorithm and training features to fit this model configuration with 4 features
<-
fit_lm_4 linear_reg() |>
set_engine("lm") |>
1fit(sale_price ~ ., data = feat_trn)
.
is a bit more useful now
This yields these parameter estimates (which as we know from 610/710 were selected to minimize SSE in the training set):
|> tidy() fit_lm_4
# A tibble: 5 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1665041. 89370. -18.6 1.14e- 69
2 gr_liv_area 76.8 2.62 29.3 3.56e-149
3 lot_area 0.514 0.146 3.51 4.60e- 4
4 year_built 854. 46.2 18.5 7.66e- 69
5 garage_cars 22901. 1964. 11.7 4.09e- 30
Here is our parametric model
Compared with our previous simple regression model:
Of course, these four features are correlated both with sale_price
but also with each other
Let’s look at correlations in the training set.
|>
feat_trn cor() |>
::corrplot.mixed() corrplot
The multiple regression model coefficients represent unique effects, controlling for all other variables in the model. You can see how the unique effect of gr_liv_area
is smaller than its overall effect from the simple regression. This also means that the overall predictive strength of the model will not be a sum of the effects of each predictor considered in isolation - it will likely be less.
Also, if the correlations are high, problems with multicollinearity will emerge. This will yield large standard errors which means that the models will start to have more variance when fit in different training datasets! We will soon learn about other regularized versions of the GLM that do not have these issues with correlated predictors.
How well does this more complex model perform in validation? Let’s compare the previous and current visualizations of \(sale\_price\) vs. \(\hat{sale\_price}\)
<- plot_truth(truth = feat_val$sale_price,
plot_1 estimate = predict(fit_lm_1, feat_val)$.pred)
<- plot_truth(truth = feat_val$sale_price,
plot_4 estimate = predict(fit_lm_4, feat_val)$.pred)
::plot_grid(plot_1, plot_4,
cowplotlabels = list("1 feature", "4 features"), hjust = -1.5)
Let’s compare model performance for the two models using RMSE in the validation set
rmse_vec(feat_val$sale_price,
predict(fit_lm_1, feat_val)$.pred)
[1] 51375.08
rmse_vec(feat_val$sale_price,
predict(fit_lm_4, feat_val)$.pred)
[1] 39903.25
# A tibble: 2 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
Given the non-linearity suggested by the truth vs. estimate plots, we might wonder if we could improve the fit if we transformed our features to be closer to normal
There are a number of recipe functions that do transformations (see Step Functions - Individual Transformations)
We will apply step_YeoJohnson()
, which is similar to a Box-Cox transformation but can be more broadly applied because the scores don’t need to be strictly positive
Let’s do it all again, now with transformed features!
<-
rec recipe(sale_price ~ gr_liv_area + lot_area + year_built + garage_cars,
data = data_trn) |>
step_impute_median(garage_cars) |>
step_YeoJohnson(lot_area, gr_liv_area, year_built, garage_cars)
<- rec |>
rec_prep prep(data_trn)
Use prepped recipe to bake the training set into features
Notice the features are now less skewed (but sale_price
is still skewed)
<- rec_prep |>
feat_trn bake(NULL)
|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 5.22 | 0.16 | 4.60 | 5.11 | 5.23 | 5.33 | 5.86 | 0.00 | 0.12 |
lot_area | 0 | 1 | 14.10 | 1.14 | 10.32 | 13.69 | 14.20 | 14.64 | 21.65 | 0.08 | 5.46 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880.00 | 1953.00 | 1972.00 | 2000.00 | 2010.00 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 2.12 | 0.98 | 0.00 | 1.11 | 2.37 | 2.37 | 5.23 | -0.03 | 0.04 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789.00 | 129500.00 | 160000.00 | 213500.00 | 745000.00 | 1.64 | 4.60 |
Use same prepped recipe to bake the validation set into features
Again, features are less skewed
<- rec_prep |>
feat_val bake(data_val)
|> skim_all() feat_val
Name | feat_val |
Number of rows | 490 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 5.22 | 0.16 | 4.65 | 5.11 | 5.23 | 5.32 | 5.66 | -0.17 | 0.19 |
lot_area | 0 | 1 | 14.14 | 1.17 | 10.57 | 13.69 | 14.24 | 14.72 | 22.44 | 0.11 | 6.12 |
year_built | 0 | 1 | 1971.08 | 30.96 | 1875.00 | 1954.00 | 1975.00 | 2000.00 | 2010.00 | -0.66 | -0.41 |
garage_cars | 0 | 1 | 2.06 | 0.96 | 0.00 | 1.11 | 2.37 | 2.37 | 5.23 | 0.01 | 0.24 |
sale_price | 0 | 1 | 178512.82 | 75493.59 | 35311.00 | 129125.00 | 160000.00 | 213000.00 | 556581.00 | 1.42 | 2.97 |
<-
fit_lm_4yj linear_reg() |>
set_engine("lm") |>
fit(sale_price ~ ., data = feat_trn)
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_4yj, feat_val)$.pred)
# A tibble: 3 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
We may need to consider
sale_price
(We will leave that to you for the application assignment if you are daring!)Many important predictors in our models may be categorical (nominal and some ordinal predictors)
tidymodels
website for more detailsFor many algorithms, we will need to use feature engineering to convert a categorical predictor to numeric features. One common technique is to use dummy coding. When dummy coding a predictor, we transform the original categorical predictor with m levels into m-1 dummy coded features.
To better understand how and why we do this, lets consider a version of ms_zoning
in the Ames dataset.
|>
data_trn pull(ms_zoning) |>
table()
agri commer float indus res_high res_low res_med
2 13 66 1 9 1157 217
We will recode ms_zoning
to have only 3 levels to make our example simple (though dummy codes can be used for predictors with any number of levels)
sale_price
and ms_zoning
fct_collapse()
from the forcats
package is our preferred way to collapse levels of a factor. See fct_recode()
for more generic recoding of levels.
ms_zoning
predictor
Take a look at the new predictor
|>
data_dummy pull(ms_zoning3) |>
table()
commercial floating residential
16 66 1383
There is no meaningful way to order the numbers that we assign to the levels of this unordered categorical predictor. The shape and strength of the relationship between it and sale_price will completely change based on arbitrary ordering of the levels.
Imagine fitting a straight line to predict sale_price
from ms_zoning3
using these three different ways to arbitrarily assign numbers to levels.
|>
data_dummy mutate(ms_zoning3 = case_when(ms_zoning3 == "residential" ~ 1,
== "commercial" ~ 2,
ms_zoning3 == "floating" ~ 3)) |>
ms_zoning3 ggplot(aes(x = ms_zoning3, y = sale_price)) +
geom_bar(stat="summary", fun = "mean")
|>
data_dummy mutate(ms_zoning3 = case_when(ms_zoning3 == "residential" ~ 2,
== "commercial" ~ 1,
ms_zoning3 == "floating" ~ 3)) |>
ms_zoning3 ggplot(aes(x = ms_zoning3, y = sale_price)) +
geom_bar(stat="summary", fun = "mean")
|>
data_dummy mutate(ms_zoning3 = case_when(ms_zoning3 == "residential" ~ 3,
== "commercial" ~ 1,
ms_zoning3 == "floating" ~ 2)) |>
ms_zoning3 ggplot(aes(x = ms_zoning3, y = sale_price)) +
geom_bar(stat="summary", fun = "mean")
Dummy coding resolves this issue.
For example, with our three-level predictor: ms_zoning3
Here is this coding scheme displayed in a table
# A tibble: 3 × 3
ms_zoning3 d1 d2
<chr> <dbl> <dbl>
1 commercial 0 0
2 residential 1 0
3 floating 0 1
With this coding:
We can add these two features manually to the data frame and view a handful of observations to make this coding scheme more concrete
# A tibble: 8 × 4
sale_price ms_zoning3 d1 d2
<dbl> <fct> <dbl> <dbl>
1 105000 residential 1 0
2 126000 residential 1 0
3 13100 commercial 0 0
4 115000 residential 1 0
5 149500 floating 0 1
6 40000 commercial 0 0
7 120000 residential 1 0
8 151000 floating 0 1
If we now fit a model where we predict sale_price
from these two dummy coded features, each feature would represent the contrast of the mean sale_price
for the level coded 1 vs. the mean sale_price
for the level that is coded 0 for all features (i.e., commercial)
sale_price
for residential vs. commercialsale_price
for floating vs. commercialms_zoning3
on sale_price
Lets do this quickly in base R using lm()
as you have done previously in 610.
<- lm(sale_price ~ d1 + d2, data = data_dummy)
m
|> summary() m
Call:
lm(formula = sale_price ~ d1 + d2, data = data_dummy)
Residuals:
Min 1Q Median 3Q Max
-166952 -50241 -20241 31254 565259
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 81523 19409 4.200 2.83e-05 ***
d1 98219 19521 5.031 5.47e-07 ***
d2 143223 21634 6.620 5.03e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 77640 on 1462 degrees of freedom
Multiple R-squared: 0.03151, Adjusted R-squared: 0.03018
F-statistic: 23.78 on 2 and 1462 DF, p-value: 6.858e-11
The mean sale price of residential properties is 9.8219^{4} dollars higher than commercial properties.
The mean sale price of floating villages is 1.43223^{5} dollars higher than commercial properties.
To understand this conceptually, it is easiest to visualize the linear model that would predict sale_price
with these two dichotomous features.
sale_price
because the only possible values for d1
and d2
(which are both dichotomous) are
Now that we understand how to use dummy coding to feature engineer nominal predictors, let’s consider some potentially important ones that are available to us.
We can discuss if any look promising.
Lets return first to ms_zoning
|>
data_trn plot_categorical("ms_zoning", "sale_price") |>
::plot_grid(plotlist = _, ncol = 2) cowplot
Warning: Groups with fewer than two datapoints have been dropped.
ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
We might:
Data dictionary entry: Identifies the general zoning classification of the sale.
lot_config
|>
data_trn plot_categorical("lot_config", "sale_price") |>
::plot_grid(plotlist = _, ncol = 2) cowplot
We see that:
sale_price
is not very different between configurationsData dictionary entry: Lot configuration
bldg_type
|>
data_trn plot_categorical("bldg_type", "sale_price") |>
::plot_grid(plotlist = _, ncol = 2) cowplot
We see that:
sale_price
among categoriesData dictionary entry: Type of dwelling
Let’s do some feature engineering with ms_zoning
. We can now do this formally in a recipe so that it can be used in our modeling workflow.
ms_zoning
that are pretty infrequent. Lets make sure both data_trn
and data_val
have all levels set for this factor.|> pull(ms_zoning) |> levels() data_trn
[1] "agri" "commer" "float" "indus" "res_high" "res_low" "res_med"
|> pull(ms_zoning) |> levels() data_val
[1] "commer" "float" "indus" "res_high" "res_low" "res_med"
agri
) in data_val
. Lets fix that here<- data_val |>
data_val mutate(ms_zoning = factor(ms_zoning,
levels = c("agri", "commer", "float", "indus",
"res_high", "res_low", "res_med")))
[Note: Ideally, you would go back to cleaning EDA and add this level to the full dataset and then re-split into training, validation and test. This is a sloppy shortcut!]
With that fixed, let’s proceed:
step_mutate()
combined with fct_collapse()
to do this inside of our recipe.step_dummy()
. The first level of the factor will be set to the reference level when we call step_dummy()
.step_dummy()
is a poor choice for function name. It actually uses whatever contrast coding we have set up in R. However, the default is are dummy coded contrasts (R calls this treatment contrasts). See ?contrasts
and options("contrasts")
for more info.<-
rec recipe(sale_price ~ gr_liv_area + lot_area + year_built + garage_cars + ms_zoning,
data = data_trn) |>
step_impute_median(garage_cars) |>
step_mutate(ms_zoning = fct_collapse(ms_zoning,
"residential" = c("res_high", "res_med", "res_low"),
"commercial" = c("agri", "commer", "indus"),
"floating" = "float")) |>
step_dummy(ms_zoning)
Let’s see if the addition of ms_zoning
helped
ms_zoning
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 7 |
_______________________ | |
Column type frequency: | |
numeric | 7 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
lot_area | 0 | 1 | 10144.16 | 8177.55 | 1476 | 7500 | 9375 | 11362 | 164660 | 11.20 | 182.91 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880 | 1953 | 1972 | 2000 | 2010 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 1.78 | 0.76 | 0 | 1 | 2 | 2 | 4 | -0.26 | 0.10 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
ms_zoning_floating | 0 | 1 | 0.05 | 0.21 | 0 | 0 | 0 | 0 | 1 | 4.38 | 17.22 |
ms_zoning_residential | 0 | 1 | 0.94 | 0.23 | 0 | 1 | 1 | 1 | 1 | -3.86 | 12.90 |
|> skim_all() feat_val
Name | feat_val |
Number of rows | 490 |
Number of columns | 7 |
_______________________ | |
Column type frequency: | |
numeric | 7 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1493.00 | 483.78 | 480 | 1143.5 | 1436.0 | 1729.50 | 3608 | 0.92 | 1.16 |
lot_area | 0 | 1 | 10462.08 | 10422.55 | 1680 | 7500.0 | 9563.5 | 11780.75 | 215245 | 15.64 | 301.66 |
year_built | 0 | 1 | 1971.08 | 30.96 | 1875 | 1954.0 | 1975.0 | 2000.00 | 2010 | -0.66 | -0.41 |
garage_cars | 0 | 1 | 1.74 | 0.76 | 0 | 1.0 | 2.0 | 2.00 | 4 | -0.24 | 0.22 |
sale_price | 0 | 1 | 178512.82 | 75493.59 | 35311 | 129125.0 | 160000.0 | 213000.00 | 556581 | 1.42 | 2.97 |
ms_zoning_floating | 0 | 1 | 0.05 | 0.22 | 0 | 0.0 | 0.0 | 0.00 | 1 | 4.07 | 14.58 |
ms_zoning_residential | 0 | 1 | 0.93 | 0.25 | 0 | 1.0 | 1.0 | 1.00 | 1 | -3.51 | 10.33 |
<-
fit_lm_6 linear_reg() |>
set_engine("lm") |>
fit(sale_price ~ ., data = feat_trn)
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_6, feat_val)$.pred)
# A tibble: 4 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
ms_zoning
may have helped a littleAs you know, the estimation procedure in linear models is OLS. Parameter estimates are derived to minimize the SSE in the data set in which they are derived. For this reason, adding a predictor will never increase RMSE in the training set and it will usually lower it even when it is not part of the DGP.
However, this is not true in validation. A predictor will only meaningfully lower RMSE in validation if it is part of the DGP. Also, a bad predictor could even increase RMSE in validation due tooverfitting.
We have two paths to pursue for ordinal predictors
Let’s consider overall_qual
|>
data_trn plot_categorical("overall_qual", "sale_price") |>
::plot_grid(plotlist = _, ncol = 2) cowplot
Observations:
sale_price
. Treat as numeric?Let’s add overall_qual
to our model as numeric
Remember that this predictor was ordinal so we paid special attention to the order of the levels when we classed this factor. Lets confirm they are in order
|> pull(overall_qual) |> levels() data_trn
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
To convert overall_qual
to numeric (with levels in the specified order), we can use another simple mutate inside our recipe.
<-
rec recipe(sale_price ~ ~ gr_liv_area + lot_area + year_built + garage_cars +
+ overall_qual, data = data_trn) |>
ms_zoning step_impute_median(garage_cars) |>
step_mutate(ms_zoning = fct_collapse(ms_zoning,
"residential" = c("res_high", "res_med", "res_low"),
"commercial" = c("agri", "commer", "indus"),
"floating" = "float"),
overall_qual = as.numeric(overall_qual)) |>
step_dummy(ms_zoning)
Let’s evaluate this model
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
<-
fit_lm_7 linear_reg() |>
set_engine("lm") |>
fit(sale_price ~ ., data = feat_trn)
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_7, feat_val)$.pred)
# A tibble: 5 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
There may be interactive effects among our predictors
For example, it may be that the relationship between year_built
and sale_price
depends on overall_qual
.
In the tidymodels
framework
tidymodels
website<-
rec recipe(sale_price ~ ~ gr_liv_area + lot_area + year_built + garage_cars +
+ overall_qual, data = data_trn) |>
ms_zoning step_impute_median(garage_cars) |>
step_mutate(ms_zoning = fct_collapse(ms_zoning,
"residential" = c("res_high", "res_med", "res_low"),
"commercial" = c("agri", "commer", "indus"),
"floating" = "float"),
overall_qual = as.numeric(overall_qual)) |>
step_dummy(ms_zoning) |>
step_interact(~ overall_qual:year_built)
Let’s prep, bake, fit, and evaluate!
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
feat_trn
here)|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 9 |
_______________________ | |
Column type frequency: | |
numeric | 9 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
lot_area | 0 | 1 | 10144.16 | 8177.55 | 1476 | 7500 | 9375 | 11362 | 164660 | 11.20 | 182.91 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880 | 1953 | 1972 | 2000 | 2010 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 1.78 | 0.76 | 0 | 1 | 2 | 2 | 4 | -0.26 | 0.10 |
overall_qual | 0 | 1 | 6.08 | 1.41 | 1 | 5 | 6 | 7 | 10 | 0.20 | -0.03 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
ms_zoning_floating | 0 | 1 | 0.05 | 0.21 | 0 | 0 | 0 | 0 | 1 | 4.38 | 17.22 |
ms_zoning_residential | 0 | 1 | 0.94 | 0.23 | 0 | 1 | 1 | 1 | 1 | -3.86 | 12.90 |
overall_qual_x_year_built | 0 | 1 | 12015.69 | 2907.93 | 1951 | 9800 | 11808 | 14021 | 20090 | 0.24 | -0.11 |
<-
fit_lm_8 linear_reg() |>
set_engine("lm") |>
fit(sale_price ~.,
data = feat_trn)
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_8, feat_val)$.pred)
# A tibble: 6 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
You can also feature engineer interactions with nominal (and ordinal predictors treated as nominal) predictors
starts_with()
or matches()
to make it easy if there are many features associated with a categorical predictorLet’s code an interaction between ms_zoning
& year_built
.
ms_zoning
wasn’t useful<-
rec recipe(sale_price ~ ~ gr_liv_area + lot_area + year_built + garage_cars +
+ overall_qual, data = data_trn) |>
ms_zoning step_impute_median(garage_cars) |>
step_mutate(ms_zoning = fct_collapse(ms_zoning,
"residential" = c("res_high", "res_med", "res_low"),
"commercial" = c("agri", "commer", "indus"),
"floating" = "float"),
overall_qual = as.numeric(overall_qual)) |>
step_dummy(ms_zoning) |>
step_interact(~ overall_qual:year_built) |>
step_interact(~ starts_with("ms_zoning_"):year_built)
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
numeric | 11 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 1506.84 | 511.44 | 438 | 1128 | 1450 | 1759 | 5642 | 1.43 | 5.19 |
lot_area | 0 | 1 | 10144.16 | 8177.55 | 1476 | 7500 | 9375 | 11362 | 164660 | 11.20 | 182.91 |
year_built | 0 | 1 | 1971.35 | 29.65 | 1880 | 1953 | 1972 | 2000 | 2010 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 1.78 | 0.76 | 0 | 1 | 2 | 2 | 4 | -0.26 | 0.10 |
overall_qual | 0 | 1 | 6.08 | 1.41 | 1 | 5 | 6 | 7 | 10 | 0.20 | -0.03 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789 | 129500 | 160000 | 213500 | 745000 | 1.64 | 4.60 |
ms_zoning_floating | 0 | 1 | 0.05 | 0.21 | 0 | 0 | 0 | 0 | 1 | 4.38 | 17.22 |
ms_zoning_residential | 0 | 1 | 0.94 | 0.23 | 0 | 1 | 1 | 1 | 1 | -3.86 | 12.90 |
overall_qual_x_year_built | 0 | 1 | 12015.69 | 2907.93 | 1951 | 9800 | 11808 | 14021 | 20090 | 0.24 | -0.11 |
ms_zoning_floating_x_year_built | 0 | 1 | 90.29 | 415.84 | 0 | 0 | 0 | 0 | 2009 | 4.38 | 17.22 |
ms_zoning_residential_x_year_built | 0 | 1 | 1860.03 | 453.95 | 0 | 1948 | 1968 | 1997 | 2010 | -3.83 | 12.78 |
<-
fit_lm_10 linear_reg() |>
set_engine("lm") |>
fit(sale_price ~ ., data = feat_trn)
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_lm_10, feat_val)$.pred)
<- error_val |>
error_val bind_rows(tibble(model = "10 feature linear model w/interactions",
rmse_val = rmse_vec(feat_val$sale_price,
predict(fit_lm_10,
$.pred)))
feat_val)
error_val
# A tibble: 7 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
7 10 feature linear model w/interactions 32708.
We may also want to model non-linear effects of our predictors
tidymodels
websitestep_poly()
)K Nearest Neighbor
K Nearest Neighbor
To better understand KNN let’s simulate training data for three different DGPs (linear - y, polynomial - y2, and step - y3)
Let’s start with a simple example where the DGP for Y is linear on one predictor (X)
DGP: \(y = rnorm(150, x, 10)\)
This figure displays:
For x = 10, find the five observations that have X values closest to 10. Average the Y values for those 5 observations and that is your predicted Y associated with that new value of X.
Repeat to make predictions for Y for any other value of X,e.g., 50, 90, or any other value
KNN can easily accommodate non-linear relationships between numeric predictors and outcomes without any feature engineering for predictors
In fact, it can flexibly handle any shape of relationship
DGP: \(y2 = rnorm(150, x^4 / 800000, 8)\)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
DGP: \(y3 = if\_else(x < 40, rnorm(150, 25, 10), rnorm(150, 75, 10))\)
KNN is our first example of a statistical algorithm that includes a hyperparameter, in this case \(k\)
Algorithm hyperparameters differ from parameters in that they cannot be estimated while fitting the algorithm to the training set
They must be set in advance
k = 5
is the default for kknn()
, the engine from the kknn
package that we will use to fit a KNN within tidymodels
.
Using the polynomial DGP above, let’s look at a 5-NN yields
?kknn::train.kknn
).nearest_neighbor() |>
set_engine("kknn") |>
set_mode("regression") |>
translate()
K-Nearest Neighbor Model Specification (regression)
Computational engine: kknn
Model fit template:
kknn::train.kknn(formula = missing_arg(), data = missing_arg(),
ks = min_rows(5, data, 5))
<-
rec recipe(y2 ~ x, data = data_trn_demo)
<- rec |>
rec_prep prep(data_trn_demo)
<- rec_prep |>
feat_trn_demo bake(NULL)
<-
fit_5nn_demo nearest_neighbor() |>
set_engine("kknn") |>
set_mode("regression") |>
fit(y2 ~ ., data = feat_trn_demo)
<- rec_prep |>
feat_val_demo bake(data_val_demo)
Display 5NN predictions in validation
k = 5
) does a pretty good job of representing the shape of the DGP (low bias)Let’s pause and consider our conceptual understanding of the impact of \(k\) on the bias-variance trade-off
Smaller values of k will tend to increase overfitting (and therefore variance across training samples) but decrease bias. Larger values of k will tend to decrease overfitting but increase bias. We need to find the Goldilocks “sweet spot”
k = 1 will perfectly fit the training set. Therefore it is very dependent on the training set (high variance). It will fit both the DGP and the noise in the training set. Clearly it will likely not do as well in validation (it will be overfit to training).
k needs to be larger if there is more noise (to average over more cases). k needs to be smaller if the relationships are complex. (More on choosing k by resampling in unit 5.
k = 1
Fit new model
Recipe and features have not changed
<-
fit_1nn_demo 1nearest_neighbor(neighbors = 1) |>
set_engine("kknn") |>
set_mode("regression") |>
fit(y2 ~ ., data = feat_trn_demo)
neighbors =
Visualize prediction models in Train and Validation
Calculate RMSE in validation for two KNN models
k = 1
rmse_vec(feat_val_demo$y2,
predict(fit_1nn_demo, feat_val_demo)$.pred)
[1] 10.91586
k = 5
rmse_vec(feat_val_demo$y2,
predict(fit_5nn_demo, feat_val_demo)$.pred)
[1] 8.387035
What if we go the other way and increase \(k\) to 75
<-
fit_75nn_demo nearest_neighbor(neighbors = 75) |>
set_engine("kknn") |>
set_mode("regression") |>
fit(y2 ~ ., data = feat_trn_demo)
Visualize prediction models in Train and Validation
Calculate RMSE in validation for three KNN models
This is the bias-variance trade-off in action
k = 1
- high variancermse_vec(feat_val_demo$y2,
predict(fit_1nn_demo, feat_val_demo)$.pred)
[1] 10.91586
k = 5
- just right (well better at least)rmse_vec(feat_val_demo$y2,
predict(fit_5nn_demo, feat_val_demo)$.pred)
[1] 8.387035
k = 75
- high biasrmse_vec(feat_val_demo$y2,
predict(fit_75nn_demo, feat_val_demo)$.pred)
[1] 15.34998
To make a prediction for some new observation, we need to identify the observations from the training set that are nearest to it
Need a distance measure to define “nearest”
IMPORTANT: We care only about:
There are a number of different distance measures available (e.g., Euclidean, Manhattan, Chebyshev, Cosine, Minkowski)
Euclidean distance between any two points is an n-dimensional extension of the Pythagorean formula (which applies explicitly with 2 features/2 dimensional space).
\(C^2 = A^2 + B^2\)
\(C = \sqrt{A^2 + B^2}\)
…where C is the distance between two points
The Euclidean distance between 2 points (p and q) in two dimensions (2 predictors, x1 = A, x2 = B)
\(Distance = \sqrt{A^2 + B^2}\)
\(Distance = \sqrt{(q1 - p1)^2 + (q2 - p2)^2}\)
\(Distance = \sqrt{(2 - 1)^2 + (5 - 2)^2}\)
\(Distance = 3.2\)
One dimensional (one feature) is simply the subtraction of scores on that feature (x1) between p and q
\(Distance = \sqrt{(q1 - p1)^2}\)
\(Distance = \sqrt{(2 - 1)^2}\)
\(Distance = 1\)
N-dimensional generalization for n features:
\(Distance = \sqrt{(q1 - p1)^2 + (q2 - p2)^2 + ... + (qn - pn)^2}\)
Manhattan distance is also referred to as city block distance
For two features/dimensions
\(Distance = |A + B|\)
kknn()
uses Minkowski distance (see Wikipedia or less mathematical description)
p
, referred to as distance
in kknn()
p
= 2 and 1, respectivelynearest_neighbor()
Distance is dependent on scales of all the features. We need to put all features on the same scale
step_scale(all_numeric_predictors())
)step_range(all_numeric_predictors())
)KNN requires numeric features (for distance calculation).
step_dummy(all_nominal_predictors())
Let’s use KNN with Ames
overall_qual
as numerick = 5
algorithm<-
rec recipe(sale_price ~ gr_liv_area + lot_area + year_built + garage_cars + overall_qual,
data = data_trn) |>
step_impute_median(garage_cars) |>
step_mutate(overall_qual = as.numeric(overall_qual)) |>
1step_scale(all_numeric_predictors())
?has_role
for more details
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
|> skim_all() feat_trn
Name | feat_trn |
Number of rows | 1465 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
numeric | 6 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 2.95 | 1.00 | 0.86 | 2.21 | 2.84e+00 | 3.44 | 11.03 | 1.43 | 5.19 |
lot_area | 0 | 1 | 1.24 | 1.00 | 0.18 | 0.92 | 1.15e+00 | 1.39 | 20.14 | 11.20 | 182.91 |
year_built | 0 | 1 | 66.48 | 1.00 | 63.40 | 65.86 | 6.65e+01 | 67.45 | 67.79 | -0.54 | -0.62 |
garage_cars | 0 | 1 | 2.33 | 1.00 | 0.00 | 1.31 | 2.62e+00 | 2.62 | 5.23 | -0.26 | 0.10 |
overall_qual | 0 | 1 | 4.30 | 1.00 | 0.71 | 3.54 | 4.24e+00 | 4.95 | 7.07 | 0.20 | -0.03 |
sale_price | 0 | 1 | 180696.15 | 78836.41 | 12789.00 | 129500.00 | 1.60e+05 | 213500.00 | 745000.00 | 1.64 | 4.60 |
|> skim_all() feat_val
Name | feat_val |
Number of rows | 490 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
numeric | 6 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | skew | kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
gr_liv_area | 0 | 1 | 2.92 | 0.95 | 0.94 | 2.24 | 2.81 | 3.38 | 7.05 | 0.92 | 1.16 |
lot_area | 0 | 1 | 1.28 | 1.27 | 0.21 | 0.92 | 1.17 | 1.44 | 26.32 | 15.64 | 301.66 |
year_built | 0 | 1 | 66.47 | 1.04 | 63.23 | 65.90 | 66.61 | 67.45 | 67.79 | -0.66 | -0.41 |
garage_cars | 0 | 1 | 2.27 | 0.99 | 0.00 | 1.31 | 2.62 | 2.62 | 5.23 | -0.24 | 0.22 |
overall_qual | 0 | 1 | 4.28 | 0.98 | 0.71 | 3.54 | 4.24 | 4.95 | 7.07 | 0.00 | 0.35 |
sale_price | 0 | 1 | 178512.82 | 75493.59 | 35311.00 | 129125.00 | 160000.00 | 213000.00 | 556581.00 | 1.42 | 2.97 |
<-
fit_5nn_5num nearest_neighbor() |>
set_engine("kknn") |>
set_mode("regression") |>
fit(sale_price ~ ., data = feat_trn)
<- bind_rows(error_val,
error_val tibble(model = "5 numeric predictor 5nn",
rmse_val = rmse_vec(feat_val$sale_price,
predict(fit_5nn_5num, feat_val)$.pred)))
error_val
# A tibble: 8 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
7 10 feature linear model w/interactions 32708.
8 5 numeric predictor 5nn 32837.
KNN also mostly solved the linearity problem
plot_truth(truth = feat_val$sale_price,
estimate = predict(fit_5nn_5num, feat_val)$.pred)
But 5NN may be overfit. k = 5
is pretty low
Again with k = 20
<-
fit_20nn_5num nearest_neighbor(neighbors = 20) |>
set_engine("kknn") |>
set_mode("regression") |>
fit(sale_price ~ ., data = feat_trn)
# A tibble: 9 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
7 10 feature linear model w/interactions 32708.
8 5 numeric predictor 5nn 32837.
9 5 numeric predictor 20nn 30535.
One more time with k = 50
to see where we are in the bias-variance function
<-
fit_50nn_5num nearest_neighbor(neighbors = 50) |>
set_engine("kknn") |>
set_mode("regression") |>
fit(sale_price ~ ., data = feat_trn)
# A tibble: 10 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
7 10 feature linear model w/interactions 32708.
8 5 numeric predictor 5nn 32837.
9 5 numeric predictor 20nn 30535.
10 5 numeric predictor 50nn 31055.
To better understand bias-variance trade-off, let’s look at error across these three values of \(k\) in train and validation for Ames
Training
k = 1
rmse_vec(feat_trn$sale_price,
predict(fit_5nn_5num, feat_trn)$.pred)
[1] 19012.94
rmse_vec(feat_trn$sale_price,
predict(fit_20nn_5num, feat_trn)$.pred)
[1] 27662.2
rmse_vec(feat_trn$sale_price,
predict(fit_50nn_5num, feat_trn)$.pred)
[1] 31069.12
Validation
k = 1
)k = 20
relative to 5 and 1rmse_vec(feat_val$sale_price,
predict(fit_5nn_5num, feat_val)$.pred)
[1] 32837.37
rmse_vec(feat_val$sale_price,
predict(fit_20nn_5num, feat_val)$.pred)
[1] 30535.04
rmse_vec(feat_val$sale_price,
predict(fit_50nn_5num, feat_val)$.pred)
[1] 31054.6
Let’s do one final example and add one of our nominal variables into the model: ms_zoning
<-
rec recipe(sale_price ~ gr_liv_area + lot_area + year_built + garage_cars +
+ ms_zoning, data = data_trn) |>
overall_qual step_impute_median(garage_cars) |>
step_mutate(overall_qual = as.numeric(overall_qual)) |>
step_mutate(ms_zoning = fct_collapse(ms_zoning,
"residential" = c("res_high", "res_med", "res_low"),
"commercial" = c("agri", "commer", "indus"),
"floating" = "float")) |>
step_dummy(ms_zoning) |>
step_scale(all_numeric_predictors())
<- rec |>
rec_prep prep(data_trn)
<- rec_prep |>
feat_trn bake(NULL)
<- rec_prep |>
feat_val bake(data_val)
<-
fit_20nn_5num_mszone nearest_neighbor(neighbors = 20) |>
set_engine("kknn") |>
set_mode("regression") |>
fit(sale_price ~ ., data = feat_trn)
# A tibble: 11 × 2
model rmse_val
<chr> <dbl>
1 simple linear model 51375.
2 4 feature linear model 39903.
3 4 feature linear model with YJ 41660.
4 6 feature linear model w/ms_zoning 39846.
5 7 feature linear model 34080.
6 8 feature linear model w/interaction 32720.
7 10 feature linear model w/interactions 32708.
8 5 numeric predictor 5nn 32837.
9 5 numeric predictor 20nn 30535.
10 5 numeric predictor 50nn 31055.
11 5 numeric predictor 20nn with ms_zoning 30172.
As a teaser, here is another performance metric for this model - \(R^2\). Not too shabby! Remember, there is certainly some irreducible error in sale_price
that will put a ceiling on \(R^2\) and a floor on RMSE
rsq_vec(feat_val$sale_price,
predict(fit_20nn_5num_mszone, feat_val)$.pred)
[1] 0.8404044
Overall, we now have a model that predicts housing prices with about 30K of RMSE and accounting for 84% of the variance. I am sure you can improve on this!